Sectional category of maps related to finite spaces
DOI:
https://doi.org/10.12775/TMNA.2023.029Keywords
Sectional category, Lusternik-Schnirelmann category, poset, finite space, fixed pointAbstract
In this study, we compute some examples of sectional category secat$(f)$ and sectional number sec$(f) for continuous maps $f$ related to finite spaces. Moreover, we introduce an invariant secat$_k(f)$ for a map $f$ between finite spaces using the $k$-th barycentric subdivision and show the equality secat$_k(f)=$ secat$(\mathcal{B}(f))$ for sufficiently large $k$, where $\mathcal{B}(f)$ is the induced map on the associated polyhedra.References
K. Baclawski and A. Björner, Fixed points in partially ordered sets, Adv. Math. 31 (1979), no. 3, 263–287.
J.A. Barmak, Algebraic Topology of Finite Topological Spaces and Applications, Lecture Notes in Mathematics, vol. 2032, Springer, Heidelberg, 2011.
J.A. Barmak and E.G. Minian, Strong homotopy types, nerves and collapses, Discrete Comput. Geom. 47 (2012), no. 2, 301–328.
P. Bilski, On the inverse limits of T0 -Alexandroff spaces, Glas. Mat. Ser. III 52 (72) (2017), no. 2, 207–219.
M. Cárdenas, R. Flores, A. Quintero and M.T. Villar-Liñán, Covering-based numbers related to the LS-category of finite spaces, arXiv: 2209.14739v1.
E. Clader, Inverse limits of finite topological spaces, Homology Homotopy Appl. 11 (2009), no. 2, 223–227.
E. Clader, Erratum to “Inverse limits of finite topological spaces” [MR2591919], Homology Homotopy Appl. 18 (2016), no. 1, 25–26.
O. Cornea, G. Lupton, J. Oprea and D. Tanré, Lusternik–Schnirelmann category, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society, Providence, RI, 2003, xviii+330 pp.
M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), no. 2, 211–221.
J. González, Simplicial complexity: piecewise linear motion planning in robotics, New York J. Math. 24 (2018), 279–292.
L. Lusternik and L. Schnirelmann, Méthodes Topologiques dans les Problémes Variationnels, Hermann, Paris, 1934.
M.C. McCord, Singular homology groups and homotopy groups of finite topological spaces, Duke Math. J. 33 (1966), 465–474.
P. Pavešić, A topologist’s view of kinematic maps and manipulation complexity, Topological Complexity and Related Topics (M. Grant, G. Lupton and L. Vandembroucq, eds.), vol. 702, Contemporary Mathematics, Amer. Math. Soc., Providence, RI, 2018, pp. 61–83.
P. Pavešić, Topological complexity of a map, Homology Homotopy Appl. 21 (2019), no. 2, 107–130.
I. Rival, A fixed point theorem for finite partially ordered sets, J. Combinatorial Theory Ser. A 21 (1976), no. 3, 309–318.
A.S. Schwarz, The genus of a fiber space, Dokl. Akad. Nauk SSSR (N.S.) 119 (1958), 219–222, (Russian).
E.H. Spanier, Algebraic Topology, Springer–Verlag, New York, (corrected reprint of the 1966 original).
R.E. Stong, Finite topological spaces, Trans. Amer. Math. Soc. 123 (1966), 325–340.
F. Takens, The Lusternik–Schnirelman categories of a product space, Compositio Math. 22 (1970), 175-180.
K. Tanaka, A combinatorial description of topological complexity for finite spaces, Algebr. Geom. Topol. 18 (2018), no. 2, 779–796.
K. Tanaka, Lusternik–Schnirelmann category for categories and classifying spaces, Topology Appl. 239 (2018), 65–80.
K. Tanaka, Parametrized topological complexity of poset-stratified spaces, J. Appl. Comput. Topol. 6 (2022), no. 2, 221–246.
M.J. Thibault, Homotopy theory of combinatorial categories, Ph.D.Thesis, The University of Chicago, 2013, 109 pp.
C.A.I. Zapata and J. González, Sectional category and the fixed point property, Topol. Methods Nonlinear Anal. 56 (2020), no. 2, 559–578.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Kohei Tanaka
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0