Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A Borel linear subspace of R^\omega that cannot be covered by countably many closed Haar-meager sets
  • Home
  • /
  • A Borel linear subspace of R^\omega that cannot be covered by countably many closed Haar-meager sets
  1. Home /
  2. Archives /
  3. Vol 63, No 1 (March 2024) /
  4. Articles

A Borel linear subspace of R^\omega that cannot be covered by countably many closed Haar-meager sets

Authors

  • Taras Banakh https://orcid.org/0000-0001-6710-4611
  • Eliza Jabłońska https://orcid.org/0000-0002-0347-0214

DOI:

https://doi.org/10.12775/TMNA.2023.002

Keywords

Additive function, mid-convex function, continuity, Haar-null set, Haar-meager set, null-finite set, Haar-thin set, Polish Abelian group, Ger-Kuczma classes

Abstract

We prove that the countable product of lines contains a Haar-null Haar-meager Borel linear subspace $L$ that cannot be covered by countably many closed Haar-meager sets. This example is applied to studying the interplay between various classes of ``large'' sets and Kuczma-Ger classes in the topological vector spaces ${\mathbb R}^n$ for $n\le \omega$.

References

I. Banakh, T. Banakh and E. Jablońska, Products of K-analytic sets in locally compact groups and Kuczma–Ger classes, Axioms 11 (2022), no. 2, 65.

T. Banakh, S. Gla̧b, E. Jablońska and J. Swaczyna, Haar-I sets: looking at small sets in Polish groups through compact glasses, Dissert. Math. 564 (2021), 105 pp.

T. Banakh and E. Jablońska, Null-finite sets in metric groups and their applications, Israel J. Math. 230 (2019), no. 1, 361–386.

A. Blass, Combinatorial Cardinal Characteristics of the Continuum, Handbook of Set Theory, vols. 1–3, Springer, Dordrecht, 2010, pp. 395–489.

J.P.R. Christensen, On sets of Haar measure zero in abelian Polish groups, Israel J. Math. 13 (1972), 255–260.

U.B. Darji, On Haar meager sets, Topology Appl. 160 (2013), 2396–2400.

L. Dubikajtis, C. Ferens, R. Ger and M. Kuczma, On Mikusiński’s functional equation, Ann. Polon. Math. 28 (1973), 39–47.

P. Erdős, On some properties of Hamel bases, Colloquium Math. 10 (1963), 267–269.

R. Ger and Z. Kominek, Boundedness and continuity of additive and convex functionals, Aequationes Math. 37 (1989), 252–258.

R. Ger and M. Kuczma, On the boundedness and continuity of convex functions and additive functions, Aequationes Math. 4 (1970), 157–162.

E. Jablońska, Some analogies between Haar meager sets and Haar null sets in abelian Polish groups, J. Math. Anal. Appl. 421 (2015), 1479–1486.

A.S. Kechris, Classical Descriptive Set Theory, Springer, New York, 1998.

M. Laczkovich, Analytic subgroups of the reals, Proc. Amer. Math. Soc. 126 (1998), no. 6, 1783–1790.

B.J. Pettis, Remarks on a theorem of E.J. McShane, Proc. Amer. Math. Soc. 2 (1951), 166–171.

H. Steinhaus, Sur les distances des points des ensembles de mesure positive, Fund. Math. 1 (1920), 99–104.

A. Weil, L’intégration dans les groupes topologiques, Actualités Scientifiques et Industrielles 1145, Hermann, 1965.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-03-03

How to Cite

1.
BANAKH, Taras and JABŁOŃSKA, Eliza. A Borel linear subspace of R^\omega that cannot be covered by countably many closed Haar-meager sets. Topological Methods in Nonlinear Analysis. Online. 3 March 2024. Vol. 63, no. 1, pp. 197 - 208. [Accessed 13 December 2025]. DOI 10.12775/TMNA.2023.002.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 63, No 1 (March 2024)

Section

Articles

License

Copyright (c) 2024 Taras Banakh, Eliza Jabłońska

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop