Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Fixed point theorems in partially ordered topological spaces with applications
  • Home
  • /
  • Fixed point theorems in partially ordered topological spaces with applications
  1. Home /
  2. Archives /
  3. Vol 62, No 2 (December 2023) /
  4. Articles

Fixed point theorems in partially ordered topological spaces with applications

Authors

  • Mohamed Aziz Taoudi https://orcid.org/0000-0002-8851-8714

DOI:

https://doi.org/10.12775/TMNA.2023.013

Keywords

Fixed point theorem, partial order, increasing operator, topological space, ordinary differential equations, Hammerstein integral equations

Abstract

In this paper, we establish several new fixed point results in the framework of topological spaces endowed with a partial order. Special attention is paid to the case that the topology is induced by a metric. Our conclusions generalize many well-known results. Several examples and illustrative applications are provided to support the exposed results.

References

A. Alahmari, M. Mabrouk, M.A. Taoudi, Fixed point theorems for monotone mappings in ordered Banach spaces under weak topology features J. Math. Appl. 42 (2019), 5–19.

J. Appell, The superposition operator in function spaces – a survey, Expo. Math. 6 (1988), 209–270.

D.C. Biles, Existence of solutions for discontinuous differential equations, Differential Integral Equations 8 (1995), no. 6, 1525–1532.

A. Bressan and W. Shen, On discontinuous differential equations, Differential Inclusions and Optimal Control (J. Andres, L. Górniewicz and P. Nistri, eds.) Julius Schauder Center, Lect. Notes Nonlinear Anal. 2 (1998), 73–87.

C. Carathéodory, Vorlesungen über reelle Funktionen, Teubner, 1918.

J.A. Cid and R. Lopez Pouso, Ordinary differential equations and systems with timedependent discontinuity sets, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), no. 4, 617–637.

R. Espinola and A. Wiśnicki, The Knaster–Tarski theorem versus monotone nonexpansive mappings, Bull. Pol. Acad. Sci. Math. (2017), DOI: 10.4064/ba8120-1-2018.

R. Figueroa and R. Lopez Pouso, Discontinuous first-order functional boundary value problems, Nonlinear Anal. 69 (2008), 2142–2149.

R. Figueroa and R. Lopez Pouso, Existence of solutions of first-order differential equations via a fixed point theorem for discontinuous operators, Fixed Point Theory Appl. 2015 (2015), 220.

A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen, Acta Math. 54 (1929), 117–176.

E.R. Hassan and W. Rzymowski, Extremal solutions of a discontinuous scalar differential equation, Nonlinear Anal. 37 (1999), 997–1017.

S. Heikkila and V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, CRC Press, 1994.

S. Hu, Differential equations with discontinuous right-hand sides, J. Math. Anal. Appl. 154 (1991), 377–390.

J. Jachymski, Order-theoretic Aspects of Metric Fixed Point Theory, Handbook of Metric Fixed Point Theory, Kluwer Acad. Publ., Dordrecht, 2001, pp. 613–641.

M. Khazou and M.A. Taoudi, Existence and uniqueness of fixed points for monotone operators in partially ordered Banach spaces and applications, J. Fixed Point Theory Appl. 23 (2021), no. 2, paper no. 12, 26 pp.

K. Lan anf J.R.L. Webb, Positive solutions of semilinear differential equations with singularities, J. Differential Equations 148 (1998), no. 2, 407–421.

G. Peano, Sull’integrabilitá delle equazioni differenzialli di primo ordine, Atti. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 21 (1885), 677–685.

Q. Qiu, Some fixed point theorems of increasing operators and applications, Indian J. Pure Appl. Math. 32 (2001), no. 11, 1679–1687.

A.C.M. Ran and M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), no. 5, 1435–1443.

S. Reich and A.J. Zaslavski, Generic well-posedness of the fixed point problem for monotone nonexpansive mappings , Mathematics Almost Everywhere, World Sci. Publ., Hackensack, 2018, pp. 169–179.

W. Rzymowski, Existence of solutions for a class of discontinuous differential equations in Rn , J. Math. Anal. Appl. 233 (1999), 634–643.

B. Schroder, Ordered Sets. An Introduction With Connections From Combinatorics to Topology, second edition, Birkhauser/Springer, 2016.

K.A. Topolski, Upper and lower absolutely continuous functions with applications to discontinuous differential equations, Electron. J. Qual. Theory Differ. Equ. 83 (2017), 1–12.

M. Väth, Topological Analysis: From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions, de Gruyter, Berlin, New York, 2012.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-12-31

How to Cite

1.
TAOUDI, Mohamed Aziz. Fixed point theorems in partially ordered topological spaces with applications. Topological Methods in Nonlinear Analysis. Online. 31 December 2023. Vol. 62, no. 2, pp. 535 - 552. [Accessed 7 July 2025]. DOI 10.12775/TMNA.2023.013.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 62, No 2 (December 2023)

Section

Articles

License

Copyright (c) 2023 Mohamed Aziz Taoudi

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop