Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Existence and multiplicity of radially symmetric solutions for nonlinear Schrödinger equations
  • Home
  • /
  • Existence and multiplicity of radially symmetric solutions for nonlinear Schrödinger equations
  1. Home /
  2. Archives /
  3. Vol 62, No 2 (December 2023) /
  4. Articles

Existence and multiplicity of radially symmetric solutions for nonlinear Schrödinger equations

Authors

  • Tomoharu Kinoshita https://orcid.org/0009-0004-5635-5633

DOI:

https://doi.org/10.12775/TMNA.2023.006

Keywords

Nonlinear Schrödinger equations, radially symmetric solutions, symmetric mountain pass approach, deformation theory

Abstract

In this paper we study the following nonlinear Schrödinger equations in $\mathbb{R}^N$: $$ -\Delta u + V(x)u= g(u),\quad u \in H^1(\mathbb{R}^N), $$ where $N \ge 2$, $V \in C^1(\mathbb{R}^N,\mathbb{R})$ and $g \in C(\mathbb{R},\mathbb{R}).$ For a wide class of nonlinearities, which satisfy the Berestycki-Lions type condition, we show the existence and multiplicity of radially symmetric solutions. We use a new deformation argument under a new version of the Palais-Smale condition.

References

S. Adachi and K. Tanaka, Trudinger type inequalities in RN and their best exponents, Proc. Amer. Math. Soc. 128 (2000), 2051–2057.

A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349–381.

A. Azzollini and A. Pomponio, On the Schrödinger equation in RN under the effect of a general nonlinear term, Indiana Univ. Math. J. 58 (2009), 1361–1378.

H. Berestycki, T. Gallouët and O. Kavian, Équations de champs scalaires euclidiens non linéaires dans le plan, C.R. Acad. Sci. Paris Sér. I Math. 297 (1983), 307–310.

H. Berestycki and P.L. Lions, Nonlinear scalar field equations I, Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), 313–345.

H. Berestycki and P.L. Lions, Nonlinear scalar field equations II, Existence of infinitely many solutions, Arch. Rational Mech. Anal. 82 (1983), 347–375.

S. Cingolani and K. Tanaka, Deformation argument under PSP condition and applications, Anal. Theory Appl. 37 (2021), 191–208.

J. Hirata, N. Ikoma and K. Tanaka, Nonlinear scalar field equations in RN mountain pass and symmetric mountain pass approaches, Topol. Methods Nonlinear Anal. 35 (2010), 253–276.

J. Hirata and K. Tanaka, Nonlinear scalar field equations with L2 constraint: mountain pass and symmetric mountain pass approaches, Adv. Nonlinear Stud. 19 (2019), 263–290.

N. Ikoma, On radial solutions of inhomogeneous nonlinear scalar field equations, J. Math. Anal. Appl. 386 (2012), 744–762.

N. Ikoma, Multiplicity of radial and nonradial solutions to equations with fractional operators, Commun. Pure Appl. Anal. 19 (2020), 3501–3530.

N. Ikoma and K. Tanaka, A note on deformation argument for L2 normalized solutions of nonlinear Schrödinger equations and systems, Adv. Differential Equations 24 (2019), 609–646.

L. Jeanjean and K. Tanaka, A positive solution for a nonlinear Schrödinger equation on RN , Indiana Univ. Math. J. 54 (2005), 443–464.

C.M. Li and Y.Y. Li, Nonautonomous nonlinear scalar field equations in R2 , J. Differential Equations 103 (1993), 421–436.

Y.Y. Li, Nonautonomous nonlinear scalar field equations, Indiana Univ. Math. J. 39 (1990), 283–301.

P.L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223–283.

J. Liu, T. Liu and J.-F. Liao, A perturbation of nonlinear scalar field equations, Nonlinear Anal. 45 (2019), 531–541.

P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics 65 (1986).

P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), 270–291.

W.A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149–162.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-12-31

How to Cite

1.
KINOSHITA, Tomoharu. Existence and multiplicity of radially symmetric solutions for nonlinear Schrödinger equations. Topological Methods in Nonlinear Analysis. Online. 31 December 2023. Vol. 62, no. 2, pp. 667 - 692. [Accessed 1 July 2025]. DOI 10.12775/TMNA.2023.006.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 62, No 2 (December 2023)

Section

Articles

License

Copyright (c) 2023 Tomoharu Kinoshita

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop