Existence and multiplicity of radially symmetric solutions for nonlinear Schrödinger equations
DOI:
https://doi.org/10.12775/TMNA.2023.006Keywords
Nonlinear Schrödinger equations, radially symmetric solutions, symmetric mountain pass approach, deformation theoryAbstract
In this paper we study the following nonlinear Schrödinger equations in $\mathbb{R}^N$: $$ -\Delta u + V(x)u= g(u),\quad u \in H^1(\mathbb{R}^N), $$ where $N \ge 2$, $V \in C^1(\mathbb{R}^N,\mathbb{R})$ and $g \in C(\mathbb{R},\mathbb{R}).$ For a wide class of nonlinearities, which satisfy the Berestycki-Lions type condition, we show the existence and multiplicity of radially symmetric solutions. We use a new deformation argument under a new version of the Palais-Smale condition.References
S. Adachi and K. Tanaka, Trudinger type inequalities in RN and their best exponents, Proc. Amer. Math. Soc. 128 (2000), 2051–2057.
A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349–381.
A. Azzollini and A. Pomponio, On the Schrödinger equation in RN under the effect of a general nonlinear term, Indiana Univ. Math. J. 58 (2009), 1361–1378.
H. Berestycki, T. Gallouët and O. Kavian, Équations de champs scalaires euclidiens non linéaires dans le plan, C.R. Acad. Sci. Paris Sér. I Math. 297 (1983), 307–310.
H. Berestycki and P.L. Lions, Nonlinear scalar field equations I, Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), 313–345.
H. Berestycki and P.L. Lions, Nonlinear scalar field equations II, Existence of infinitely many solutions, Arch. Rational Mech. Anal. 82 (1983), 347–375.
S. Cingolani and K. Tanaka, Deformation argument under PSP condition and applications, Anal. Theory Appl. 37 (2021), 191–208.
J. Hirata, N. Ikoma and K. Tanaka, Nonlinear scalar field equations in RN mountain pass and symmetric mountain pass approaches, Topol. Methods Nonlinear Anal. 35 (2010), 253–276.
J. Hirata and K. Tanaka, Nonlinear scalar field equations with L2 constraint: mountain pass and symmetric mountain pass approaches, Adv. Nonlinear Stud. 19 (2019), 263–290.
N. Ikoma, On radial solutions of inhomogeneous nonlinear scalar field equations, J. Math. Anal. Appl. 386 (2012), 744–762.
N. Ikoma, Multiplicity of radial and nonradial solutions to equations with fractional operators, Commun. Pure Appl. Anal. 19 (2020), 3501–3530.
N. Ikoma and K. Tanaka, A note on deformation argument for L2 normalized solutions of nonlinear Schrödinger equations and systems, Adv. Differential Equations 24 (2019), 609–646.
L. Jeanjean and K. Tanaka, A positive solution for a nonlinear Schrödinger equation on RN , Indiana Univ. Math. J. 54 (2005), 443–464.
C.M. Li and Y.Y. Li, Nonautonomous nonlinear scalar field equations in R2 , J. Differential Equations 103 (1993), 421–436.
Y.Y. Li, Nonautonomous nonlinear scalar field equations, Indiana Univ. Math. J. 39 (1990), 283–301.
P.L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223–283.
J. Liu, T. Liu and J.-F. Liao, A perturbation of nonlinear scalar field equations, Nonlinear Anal. 45 (2019), 531–541.
P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics 65 (1986).
P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), 270–291.
W.A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149–162.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Tomoharu Kinoshita
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0