Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Existence of sign-changing solutions for a third-order boundary value problem with nonlocal conditions of integral type
  • Home
  • /
  • Existence of sign-changing solutions for a third-order boundary value problem with nonlocal conditions of integral type
  1. Home /
  2. Archives /
  3. Vol 62, No 1 (September 2023) /
  4. Articles

Existence of sign-changing solutions for a third-order boundary value problem with nonlocal conditions of integral type

Authors

  • Sergey Smirnov https://orcid.org/0000-0003-0574-1337

DOI:

https://doi.org/10.12775/TMNA.2022.074

Keywords

Third-order nonlinear boundary value problems, integral boundary condition, existence of sign-changing solutions, Green’s function, Leray-Schauder Continuation Principle

Abstract

We prove the existence of at least one sign-changing solution for a third-order nonlocal boundary value problem by applying Leray-Schauder Continuation Principle. To illustrate the applicability of the obtained results, we consider an example.

References

A. Cabada, G. Infante and F.A.F. Tojo, Nonzero solutions of perturbed Hammerstein integral equations with deviated arguments and applications, Topol. Methods Nonlinear Anal. 47 (2016), no. 1, 265–287.

Q.A. Dang and Q.L. Dang, A unified approach to fully third order nonlinear boundary value problems, J. Nonlinear Funct. Anal. 2020 (2020), ID 9, 1–17.

R. Dhanya, R. Shivaji and B. Son, A three solution theorem for a singular differential equation with nonlinear boundary conditions, Topol. Methods Nonlinear Anal. 54 (2019), no. 2A, 445–457.

J.R. Graef and J.R.L. Webb, Third order boundary value problems with nonlocal boundary conditions, Nonlinear Anal. 71 (2009), 1542–1551.

B. Hopkins and N. Kosmatov, Third-order boundary value problems with sign-changing solutions, Nonlinear Anal. 67 (2007), 126–137.

G. Infante, Nonzero positive solutions of a multi-parameter elliptic system with functional bcs, Topol. Methods Nonlinear Anal. 52 (2018), no. 2, 665–675.

G. Infante, Nontrivial solutions of systems of perturbed Hammerstein integral equations with functional terms, Mathematics 9 (2021), no. 4, 330.

P.S. Kelevedjiev and T.Z. Todorov, Existence of solutions of nonlinear third-order two-point boundary value problems, Electron. J. Qual. Theory Differ. Equ. 23 (2019), 1–15.

Y. Niu and B Yan, The existence of positive solutions for the singular two-point boundary value problem, Topol. Methods Nonlinear Anal. 49 (2017), no. 2, 665–682.

A. Sfecci, Double resonance in Sturm–Liouville planar boundary value problems, Topol. Methods Nonlinear Anal. 55 (2020), no. 2, 655–680.

J.R.L. Webb, Non-local second-order boundary value problems with derivative-dependent nonlinearity, Philos. Trans. Roy. Soc. A 379 (2021), 1–12.

J.R.L. Webb and G. Infante, Nonlocal boundary value problems of arbitrary order J. London Math. Soc. 79 (2009), no. 1, 238–258.

J.R.L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems involving integral conditions NoDEA Nonlinear Differential Equations Appl. 15 (2008), 45–67.

P. Wu and Y. Zhou, Sign-changing solutions for the boundary value problem involving the fractional p-Laplacian, Topol. Methods Nonlinear Anal. 57 (2021), no. 2, 597–619.

E. Zeidler, Nonlinear Functional Analysis and its Applications I. Fixed-Point Theorems, Springer–Verlag, New York, 1986.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-09-23

How to Cite

1.
SMIRNOV, Sergey. Existence of sign-changing solutions for a third-order boundary value problem with nonlocal conditions of integral type. Topological Methods in Nonlinear Analysis. Online. 23 September 2023. Vol. 62, no. 1, pp. 377 - 384. [Accessed 9 January 2026]. DOI 10.12775/TMNA.2022.074.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 62, No 1 (September 2023)

Section

Articles

License

Copyright (c) 2023 Sergey Smirnov

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop