Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Conley index theory for Gutierrez-Sotomayor flows on singular 3-manifolds
  • Home
  • /
  • Conley index theory for Gutierrez-Sotomayor flows on singular 3-manifolds
  1. Home /
  2. Archives /
  3. Vol 62, No 1 (September 2023) /
  4. Articles

Conley index theory for Gutierrez-Sotomayor flows on singular 3-manifolds

Authors

  • Ketty A. de Rezende https://orcid.org/0000-0003-1652-5007
  • Nivaldo G. Grulha Jr. https://orcid.org/0000-0003-4977-9070
  • Dahisy V. de S. Lima https://orcid.org/0000-0002-7654-822X
  • Murilo A. J. Zigart https://orcid.org/0000-0001-6626-5704

DOI:

https://doi.org/10.12775/TMNA.2022.070

Keywords

Conley index, Lyapunov function, Lyapunov graph, cobordisms, handle theory

Abstract

This paper is a continuation of the investigation done in dimension two, this time for the Gutierrez-Sotomayor vector fields on singular $3$-manifolds. The singularities of Gutierrez-Sotomayor flows (GS flows, for short) in this setting are the 3-dimensional counterparts of cones, cross-caps, double and triple crossing points. First, we prove the existence of a Lyapunov function in a neighborhood of a given singularity of a GS flow, i.e.\ a GS singularity. In these neighbourhoods, index pairs are defined and allow a direct computation of the Conley indices for the different types of GS singularities. The Conley indices are used to prove local necessary conditions on the number of connected boundary components of an isolating block for a GS singularity as well as their Euler characteristic. Lyapunov semi-graphs are introduced as a tool to record this topological and dynamical information. Lastly, we construct isolating blocks so as to prove the sufficiency of the connectivity bounds on the boundaries of isolating blocks given by the Lyapunov semi-graphs.

References

M.A. Bertolim, D.V.S. Lima, M.P. Mello, K.A. De Rezende and M.R. Da Silveira, A global two-dimensional version of Smale’s cancellation theorem via spectral sequences, Ergodic Theory Dynam. Systems 36 (2016), no. 6, 1795–1838.

P.C. Carrião, Estabilidade de Campos de Vetores em Variedades com Singularidades, Ph.D. thesis, 1985.

C.C. Conley, Isolated Invariant Sets and the Morse Index, vol. 38, American Mathematical Soc., 1978.

K.A. de Rezende, N.G. Grulha Jr., D.V.S. Lima and M.A.J. Zigart, Gutierrez–Sotomayor flows on singular surfaces, Topol. Methods Nonlinear Anal. 60 (2022), no. 1, 221–275.

R. Franzosa, Index filtrations and the homology index braid for partially ordered Morse decompositions, Tran. Amer. Math. Soc. 298 (1986), 193–213.

C.G. Gibson, Singular Points of Smooth Mappings, vol. 25, Pitman Publishing, 1979.

C. Gutierrez and J. Sotomayor, Stable vector fields on manifolds with simple singularities, Proc. London Math. Soc. 3 (1982), no. 1, 97–112.

A. Hatcher, Algebraic Topology, Cambridge Univ. Press, 2000, https://cds.cern.ch/record/478079.

H.L. Kurland, Homotopy invariants of repeller-attractor pairs, I. The Puppe sequence of an R-A pair, J. Differential Equations 46 (1982), no. 1, 1–31.

D.V.S. Lima, S.A. Raminelli and K.A. de Rezende, Homotopical cancellation theory for Gutierrez–Sotomayor singular flows, J. Singul. 23 (2021), 33–91.

D.V.S. Lima, O.M. Neto, K.A. de Rezende and M.R. da Silveira, Cancellations for circle-valued Morse functions via spectral sequences, Topol. Methods Nonlinear Anal. 51 (2018), no. 1, 259–311.

J. Llibre, P.R. da Silva and M.A. Teixeira, Sliding vector fields for non-smooth dynamical systems having intersecting switching manifolds, Nonlinearity 28 (2015), no. 2, 493–507.

C. McCord and K. Mischaikow, Connected simple systems, transition matrices, and heteroclinic bifurcations, Trans. Amer. Math. Soc. 333 (1992), no. 1, 397-422.

C. McCord, K. Mischaikow and M. Mrozek, Zeta functions, periodic trajectories, and the Conley index, J. Differential Equations 121 (1995), no. 2, 258–292.

H.R. Montúfar and K.A. de Rezende, Conley theory for Gutierrez–Sotomayor fields, J. Singul. 22 (2020), 241–277.

M. Mrozek and P. Pilarczyk, The Conley index and rigorous numerics for attracting periodic orbits, Variational and Topological Methods in the Study of Nonlinear Phenomena (Pisa, 2000), Progr. Nonlinear Differential Equations Appl., vol. 49, Birkhäuser Boston, Boston, MA, 2002, pp. 65–74.

J. Munkres, Topology, Second Edition.

M.J. Pacifico, Structural stability of vector fields on 3-manifolds with boundary, J. Differential Equations 54 (1984), no. 3, 346–372.

J. Palis, On Morse–Smale dynamical systems, Topology 8 (1969), no. 4, 385–404.

J. Palis and S. Smale, Structural stability theorems, The Collected Papers of Stephen Smale, vol. 2, 2000, pp. 739–747.

M.M. Peixoto, Structural stability on two-dimensional manifolds, Topology 1 (1962), no. 2, 101–120.

R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969), no. 2, 240–284.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-09-23

How to Cite

1.
DE REZENDE, Ketty A., GRULHA JR., Nivaldo G., LIMA, Dahisy V. de S. and ZIGART, Murilo A. J. Conley index theory for Gutierrez-Sotomayor flows on singular 3-manifolds. Topological Methods in Nonlinear Analysis. Online. 23 September 2023. Vol. 62, no. 1, pp. 267 - 326. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2022.070.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 62, No 1 (September 2023)

Section

Articles

License

Copyright (c) 2023 Ketty A. de Rezende, Nivaldo G. Grulha Jr., Dahisy V. de S. Lima, Murilo A. J. Zigart

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop