Local Morrey estimate in Musielak-Orlicz-Sobolev space
DOI:
https://doi.org/10.12775/TMNA.2023.001Keywords
Musielak-Sobolev space, Morrey estimate, Hölder continuityAbstract
Under appropriate assumptions on the $N(\Omega)$-fucntion, locally uniform Morrey estimate is presented in the Musielak-Orlicz-Sobolev space. The assumptions include a new increasing condition on the $x$-derivative of the Young complementary function of the $N(\Omega)$-fucntion. The conclusion applies to several important nonlinear examples frequently appeared in mathematical literature.References
E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal. 156 (2001), 121–140.
R. Adams, Sobolev Spaces, New York, Acad. Press, 1975.
Y. Ahmida, I. Chlebicka, P. Gwiazda and A. Youssfi, Gossez’s approximation theorems in Musielak–Orlicz–Sobolev spaces, J. Func. Anal. 275 (2018), no. 9, 2538–2571.
J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal. 63 (1976/1977), no. 4, 337–403.
K. Chelmiński and S. Owczarek, Renormalised solutions in thermo-visco-plasticity for a Norton–Hoff type model, Part II: the limit case, Nonlinear Anal. 31 (31) (2016), 643–660.
I. Chlebicka, P. Gwiazda, A.Ś. Gwiazda and A.W. Kamińska, Partial Differential Equations in Anisotropic Modular Orlicz Spaces, Springer Nature Switzerland AG, Springer, 2021.
M. Colombo and G. Mingione, Bounded minimizers of double phase variational integrals, Arch. Ration. Mech. Anal. 218 (2015), 219–273.
M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2015), 443–496.
T.K. Donaldson and N.S. Trudinger, Orlicz–Sobolev spaces and imbedding theorems, J. Func. Anal. 8 (1971), 52–75.
X. Fan, Differential equations of divergence form in Musielak–Sobolev spaces and subsupersolution method, J. Math. Anal. Appl. 386 (2012), 593–604.
X. Fan, An imbedding theorem for Musielak–Sobolev spaces, Nonlinear Anal. 75 (2012), 1959–1971.
X. Fan and Q. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843–1852.
X. Fan and D. Zhao, The quasi-minimizer of integral functionals with m(x)-growth conditions, Nonlinear Anal. 39 (2000), 807–816.
J.P. Gossez, Some approximation properties in Orlicz–Sobolev spaces, Studia Math. 74 (1982), no. 1, 17–24.
P. Gwiazda and A. Świerczewska-Gwiazda, On non-Newtonian fluids with a property of rapid thickening under different stimulus, Math. Models Methods Appl. Sci. 18 (2008), no. 7, 1073–1092.
P. Gwiazda and A. Świerczewska-Gwiazda, On steady non-Newtonian fluids with growth conditions in generalized Orlicz spaces, Topol. Methods Nonlinear Anal. 32 (2008), 103–113.
P. Gwiazda, A. Świerczewska-Gwiazda and A. Wróblewska, Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Math. Methods Appl. Sci. 33 (2010), no. 2, 125–137.
P. Gwiazda, A. Świerczewska-Gwiazda and A. Wróblewska, Generalized Stokes system in Orlicz spaces, Discrete Contin. Dyn. Syst. 32 (2012), no. 6, 2125–2146.
P. Harjulehto, P. Hästö and R. Klén, Generalized Orlicz spaces and related PDE, Nonlinear Anal. 143 (2016), 155–173.
F.Z. Klawe, Thermo-visco-elasticity for models with growth conditions in Orlicz spaces, Topol. Methods Nonlinear Anal. 47 (2016), no. 2, 457–497.
D. Liu and J. Yao, A class of De Giorgi type and local boundedness, Topol. Methods Nonlinear Anal. 51 (2018), 345–370.
D. Liu and P. Zhao, Solutions for a quasilinear elliptic equation in Musielak–Sobolev spaces, Nonlinear Anal. 26 (2015), 315–329.
P. Marcellini, Regularity of minimizers of integrals of the caculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal. 105 (1989), 267–284.
P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differential Equations 90 (1991), 1–30.
J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034, Springer–Verlag, Berlin, 1983.
A. Świerczewska-Gwiazda, Anisotropic parabolic problems with slowly or rapidly growing terms, Colloq. Math. 134 (2014), no. 1, 113–130.
A. Świerczewska-Gwiazda, Nonlinear parabolic problems in Musielak–Orlicz spaces, Nonlinear Anal. 134 (2014), no. 98, 48–65.
B. Wang, D. Liu and P. Zhao, Hölder continuity for nonlinear elliptic problem in Musielak–Orlicz–Sobolev space, J. Differential Equations 266 (2019), 4835–4863.
A. Wróblewska, Steady flow of non-Newtonian fluids–monotonicity methods in generalized Orlicz spaces, Nonlinear Anal. 72(11) (2010), 4136–4147.
A. Wróblewska, Unsteady flows of non-Newtonian fluids in generalized Orlicz spaces, Discrete Contin. Dyn. Syst. 33 (2013), no. 6, 2565–2592.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Duchao Liu, Peihao Zhao
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0