Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

G-category versus orbifold category
  • Home
  • /
  • G-category versus orbifold category
  1. Home /
  2. Archives /
  3. Vol 61, No 1 (March 2023) /
  4. Articles

G-category versus orbifold category

Authors

  • Andrés Ángel
  • Hellen Colman https://orcid.org/0000-0002-3889-5749

DOI:

https://doi.org/10.12775/TMNA.2022.055

Keywords

Orbifolds, $G$-spaces, Lusternik-Schnirelman category, Hilsum-Skandalis maps, path groupoid

Abstract

We present a comparative study of certain invariants defined for group actions and their analogues defined for orbifolds. In particular, we prove that Fadell's equivariant category for $G$-spaces coincides with the Lusternik-Schnirelmann category for orbifolds when the group is finite.

References

A. Angel and H. Colman, Free and based path groupoids, Algebr. Geom. Topol. (2022). (to appear)

A. Angel, H. Colman, M. Grant and J. Oprea, Morita invariance of equivariant Lusternik–Schnirelmann category and invariant topological complexity, Theory Appl. Categ. 35 (2020), no. 7, 179–195.

G.E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Academic Press, New York, London, 1972.

M. Clapp and D. Puppe, Invariants of the Lusternik–Schnirelmann type and the topology of critical sets, Trans. Amer. Math. Soc. 298 (1986), no. 2, 603–620.

H. Colman, Equivariant LS-category for finite group actions, In Lusternik–Schnirelmann category and related topics (South Hadley, MA, 2001), Contemp. Math., vol. 316, Amer. Math. Soc., Providence, RI, 2002, pp. 35–40.

O. Cornea, G. Lupton, J. Oprea and D. Tanré, Lusternik–Schnirelmann Category, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society, Providence, RI, 2003.

E. Fadell, The equivariant Lusternik–Schnirelmann method for invariant functionals and relative cohomological index theories, Topological Methods in Nonlinear Analysis, Sém. Math. Sup., vol. 95, Presses Univ. Montréal, Montreal, QC, 1985, pp. 41–70.

W. Marzantowicz, A G-Lusternik–Schnirelman category of space with an action of a compact lie group, Topology 28 (1089), no. 4, 403–412.

J.P. May, Equivariant homotopy and cohomology theory, CBMS Regional Conference Series in Mathematics, vol. 91, The Conference Board of the Mathematical Sciences, Washington, DC; American Mathematical Society, Providence, RI, 1996.

I. Moerdijk and J. Mrčun, Lie groupoids, sheaves and cohomology, Poisson Geometry, Deformation Quantisation and Group Representations, Lecture Note Ser., vol. 323, London Math. Soc., Cambridge Univ. Press, Cambridge, 2005, pp. 145–272.

I. Moerdijk and D. Pronk., Orbifolds, sheaves and groupoids, K-Theory 12 (1997), 3–21.

J. Mrčun, Stability and invariants of Hilsum–Skandalis maps, PhD thesis, 2005.

J. Pardon, Enough vector bundles on orbispaces, Compos. Math. 158 (2022), no. 11, 2046–2081.

D. Pronk, Etendues and stacks as bicategories of fractions, Compos. Math. 102 (1996), no. 3, 243–303.

D. Pronk and L. Scull, Translation groupoids and orbifold cohomology, Canad. J. Math. 62 (2010), no. 3, 614–645.

I. Satake, On a generalization of the notion of manifold, Proc. Natl. Acad. Sci. USA 42 (1956), 359–363.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-02-26

How to Cite

1.
ÁNGEL, Andrés and COLMAN, Hellen. G-category versus orbifold category. Topological Methods in Nonlinear Analysis. Online. 26 February 2023. Vol. 61, no. 1, pp. 179 - 197. [Accessed 17 May 2025]. DOI 10.12775/TMNA.2022.055.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 61, No 1 (March 2023)

Section

Articles

License

Copyright (c) 2023 Andrés Ángel, Hellen Colman

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop