Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Parametrized topological complexity of sphere bundles
  • Home
  • /
  • Parametrized topological complexity of sphere bundles
  1. Home /
  2. Archives /
  3. Vol 61, No 1 (March 2023) /
  4. Articles

Parametrized topological complexity of sphere bundles

Authors

  • Michael Farber https://orcid.org/0000-0003-1419-4347
  • Shmuel Weinberger Weinberger https://orcid.org/0000-0002-4315-9164

DOI:

https://doi.org/10.12775/TMNA.2022.049

Keywords

Robot motion planning, topological complexity, motion planning algorithm, characteristic classes

Abstract

Parametrized motion planning algorithms \cite{CFW} have high degree of flexibility and universality, they can work under a variety of external conditions, which are viewed as parameters and form part of the input of the algorithm. In this paper we analyse the parameterized motion planning problem in the case of sphere bundles. Our main results provide upper and lower bounds for the parametrized topological complexity; the upper bounds typically involve sectional categories of the associated fibrations and the lower bounds are given in terms of characteristic classes and their properties. We explicitly compute the parametrized topological complexity in many examples and show that it may assume arbitrarily large values.

References

D.C. Cohen, M. Farber and S. Weinberger, Topology of parametrized motion planning algorithms, SIAM J. Appl. Algebra Geom. 5 (2021), 229–249.

D.C. Cohen, M. Farber and S. Weinberger, Parametrized topological complexity of collision-free motion planning in the plane, Ann. Math. Artif. Intell. 90 (2022), no. 10, 999–1015.

A. Dold, Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223–255.

E. Fadell and S. Husseini, Category weight and Steenrod operations, Bol. Soc. Mat. Mexicana (2) 37 (1992), no. 1–2, 151–161.

M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), 211–221.

M. Farber, Invitation to Topological Robotics, Zurich Lectures in Advanced Mathematics, EMS, 2008.

J.M. Garcı́a-Calcines, A note on covers defining relative and sectional categories, Topology Appl. 265 (2019), 106810.

I.M. James, Reduced product spaces, Ann. Math. 62 (1955), 170–197.

S.M. LaValle, Planning Algorithms, Cambridge University Press, 2006.

J.W. Milnor and J.D. Stasheff, Characteristic Classes, Princeton University Press, 1974.

A.S. Schwarz, The genus of a fibre space, Trudy Moscow Math Society 11 (1962), 99–126.

E. Spanier, Algebraic Topology, 1966.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-02-26

How to Cite

1.
FARBER, Michael and WEINBERGER, Shmuel Weinberger. Parametrized topological complexity of sphere bundles. Topological Methods in Nonlinear Analysis. Online. 26 February 2023. Vol. 61, no. 1, pp. 161 - 177. [Accessed 17 May 2025]. DOI 10.12775/TMNA.2022.049.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 61, No 1 (March 2023)

Section

Articles

License

Copyright (c) 2023 Michael Farber, Shmuel Weinberger Weinberger

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop