The fixed point set of the inverse involution on a Lie group
DOI:
https://doi.org/10.12775/TMNA.2022.012Keywords
Lie groups, symmetric spaces, fixed point theoryAbstract
The inverse involution on a Lie group $G$ is the periodic $2$ transformation $\gamma $ that sends each element $g\in G$ to its inverse $g^{-1}$. The variety of the fixed point set $\Fix(\gamma )$ is of importance for the relevances with Morse function on the Lie group $G$, and the $G$-representations of the cyclic group $\mathbb{Z}_{2}$. In this paper we develop an approach to calculate the diffeomorphism types of the fixed point sets $\Fix(\gamma)$ for the simple Lie groups.References
N. Bourbaki, Elements de mathematique, Chapters I–VIII, Groupes et algebres de Lie, Hermann, Paris, 1960–1975.
T. Bröker and T. tom Dieck, Representations of Compact Lie Groups, Graduate Texts in Mathematics, vol. 98, Springer–Verlag, New York, 1985.
A. Borel and J. De Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23 (1949), 200–221.
J. Cheeger, Pinching theorems for a certain class of Riemannian manifolds, Amer. J. Math. 91 (1969), 807–834.
P.J. Crittenden, Minimum and conjugate points in symmetric spaces, Canad. J. Math. 14 (1962), 320–328.
H. Duan, The Lefschetz number of self-maps of Lie groups, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1284–1286.
H. Duan, A unified Morse theory of compact Lie groups, in preparation.
H. Duan and S. Liu, The isomorphism type of the centralizer of an element in a Lie group, J. Algebra 376 (2013), 25–45.
Dž. Djoković, On conjugacy classes of elements of finite order in compact or complex semisimple Lie groups, Proc. Amer. Math. Soc. 80 (1980), no. 1, 181–184.
T. Frankel, Critical submanifolds of the classical groups and Steifel manifolds, Conference: Differential and Combinatorial Topology (in honour of M. Morse), Princeton Univ. Press, 1965, pp. 37–53.
T. Friedmann and R.P. Stanley, Counting conjugacy classes of elements of finite order in Lie groups, Europ. J. Combinatorics 36 (2014), 86–96.
S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc., New York, London, 1978.
E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, vol. 9, Springer–Verlag, New York, Berlin, 1972.
S. Ramanujam, Morse theory of certain symmetric spaces, J. Differential Geom. 3 (1969), 213–229.
I. Yokota, Realizations of involutive automorphisms σ and Gσ of exceptional linear Lie groups G, part I, G = G2 , F4 and E6 , Tsukuba J. Math. 14 (1990), 185–223.
I. Yokota, Realizations of involutive automorphisms σ and Gσ of exceptional linear Lie groups G, part II, G = E7 , Tsukuba J. Math. 14 (1990), 379–404.
I. Yokota, Realizations of involutive automorphisms σ and Gσ of exceptional linear Lie groups G, part III, G = E8 , Tsukuba J. Math 15 (1991), 301–314.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Haibao Duan, Shali Liu

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0