Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Fourth-order elliptic problems involving concave-superlinear nonlinearities
  • Home
  • /
  • Fourth-order elliptic problems involving concave-superlinear nonlinearities
  1. Home /
  2. Archives /
  3. Vol 60, No 2 (December 2022) /
  4. Articles

Fourth-order elliptic problems involving concave-superlinear nonlinearities

Authors

  • Thiago R. Cavalcante https://orcid.org/0000-0001-5987-2768
  • Edcarlos D. Silva https://orcid.org/0000-0001-8047-465X

DOI:

https://doi.org/10.12775/TMNA.2022.011

Keywords

Fourth-order elliptic problems, variational methods, concave-superlinear elliptic problems, nonquadraticity condition

Abstract

The existence of solutions for a huge class of superlinear elliptic problems involving fourth-order elliptic problems defined on bounded domains under Navier boundary conditions is established. To this end we do not apply the well-known Ambrosetti-Rabinowitz condition. Instead, we assume that the nonlinear term is nonquadratic at infinity. Furthermore, the nonlinear term is a concave-superlinear function which can be indefinite in sign. In order to apply variational methods we employ some delicate arguments recovering some kind of compactness.

References

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.

S. Agmon, A. Douglis and L. Niremberg, Estimates near the boundary for elliptic partial differential equations satisfying general boundary conditions, Comm. Pure Appl. Math. 12 (1959), 623–727.

C.O. Alves and J.M. do Ó, Positive solutions of a fourth-order semilinear problem involving critical growth, Adv. Nonlinear Stud. 2 (2002), 437–458.

E. Berchio, A. Ferrero, F. Gazzola and P. Karageorgis, Qualitative behavior of global solutions to some nonlinear fourth order differential equations, J. Differential Equations 251 (2011), 2696–2727.

E. Berchio, F. Gazzola and E. Mitidieri, Positivity preserving property for a class of biharmonic elliptic problems, J. Differential Equations 229 (2006), 1–23.

E. Berchio, F. Gazzola and T. Weth, Critical growth biharmonic elliptic problems under Steklov-type boundary condition, Adv. Differential Equations 12 (2007), no. 4, 381–406.

F. Bernis, J. Garcia Azorero and I. Peral, Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth-order, Adv. Differential Equations 1 (1996), 219–240.

K.J. Brown and T.F. Wu, A Fibering map approach to a semilinear elliptic boundary value problem, Electronic J. Differential Equations 69 (2007), 1–9.

J. Chabrowski and J.M. do Ó, On some fourth-order semilinear elliptic problems in RN , Nonlinear Anal. 49 (2002), 861–884.

Y. Chen and P.J. McKenna, Traveling waves in a nonlinear suspension beam: theoretical results and numerical observations, J. Differential Equations 135 (1997), 325–355.

F.J.S.A. Corrêa, J.V. Gonçalves and A. Roncalli, On a class of fourth order nonlinear elliptic equations under Navier boundary conditions, Anal. Appl. (Singap.) 8 (2010), 185–197.

D.G. Costa, C.A. Magalhães, Variational elliptic problems which are nonquadratic at infinity, Nonlinear Anal. 23 (1994), 1401–1412.

E.D. da Silva and T.R. Cavalcante, Multiplicity of solutions to fourth-order superlinear elliptic problems under Navier conditions, Electron. J. Difer. Equ. 167 (2017), 1–16.

G. Figueiredo, M.F. Furtado and J.P. Silva, Existence and multiplicity of positive solutions for a fourth-order elliptic equation, Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 2, 1053–1069.

M. Furtado and E. da Silva, Superlinear elliptic problems under the nonquadriticty condition at infinity, Proc. Roy. Soc. Edinburgh Sect. A 145 (2015), no. 4, 779–790.

F. Gazzola, H.C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems. Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains, Lecture Notes in Mathematics, vol. 1991, Springer–Verlag, Berlin, 2010.

F. Gazzola and R. Pavani, Wide oscillation finite time blow up for solutions to nonlinear fourth-order differential equations, Arch. Rational Mech. Anal. 207 (2013), 717–752.

D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer–Verlag, Berlin, Heidelberg, 2001.

J.V.A. Gonçalves, E.D. Silva and M.L. Silva, On positive solutions for a fourth-order asymptotically linear elliptic equation under Navier boundary conditions, J. Math. Anal. Appl. 384 (2011), 387–399.

C. P. Gupta and Y.C. Kwong, Biharmonic eigenvalue problems and Lp estimates, Internat. J. Math. Math. Sci. 13 (1990), no. 3, 469–480.

L. Iturriaga, S. Lorca and P. Ubilla, A quasilinear problem without the Ambrosetti–Rabinowitz-type condition, Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), 391–398.

L. Jeanjean, On the existence of bounded Palais–Smale sequences and an application to Landemann–Lazer type problem set RN , Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), 797–809.

A.C. Lazer and P.J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev. 32 (1990), 537–578.

C. Li, R.P. Agarwal and Z.-Q. Ou, Existence of three nontrivial solutions for a class of fourth-order elliptic equations, Topol. Methods Nonlinear Anal. 51 (2018), no. 2, 331–344.

Z. Liu and Z.Q. Wang, On the Ambrosetti–Rabinowitz superlinear condition, Adv. Nonlinear Stud. 4 (2004), 653–574.

P.J. Mckenna and W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Ration. Mech. Anal. 98 (1987), no. 2, 167–177.

P.J. Mckenna and W. Walter, Travelling waves in a suspension bridge, SIAM J. Appl. Math. 50 (1990), 703–715.

A.M. Micheletti and A. Pistoia, Nontrivial solutions for some fourth-order semilinear elliptic problems, Nonlinear Anal. 34 (1998), 509–523.

O.H. Miyagaki and M.A.S. Souto, Supelinear problems without Ambrosetti–Rabinowitz growth condition , J. Differential Equations 245 (2008), 3628–3638.

Y. Pu, X.P. Wu and C.L. Tang, Fourth-order Navier boundary value problem with combined nonlinearities, J. Math. Anal. Appl. 398 (2013), 798–813.

T. Riedel and P.K. Sahoo, Mean Value Theorems and Functional Equations, World Scientific Publishing Company, 1998.

G. Tarantello, A note on a semilinear elliptic problem, Differential Integral Equations 5 (1992), no. 3, 561–565.

W. Wang, A. Zang and P. Zhao, Multiplicity of solutions for a class of fourth elliptic equations, Nonlinear Anal. 70 (2009), 4377–4385.

Z.Q. Wang, On a supelinear ellitic equation , Anal. Inst. H. Poincaré Anal. Nonlinéare 8 (1991), 43–57.

W. Zhang, B. Cheng, X. Tang and J. Zhang, Sign-changing solutions for fourth order elliptic equations with Kirchhoff-type, Commun. Pure Appl. Anal. 15 (2016), no. 6, 2161–2177.

J.W. Zhou and X. Wu, Sign-changing solutions for some fourth-order nonlinear elliptic problems, J. Math. Anal. Appl. 342 (2008), 542–558.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-12-11

How to Cite

1.
CAVALCANTE, Thiago R. & SILVA, Edcarlos D. Fourth-order elliptic problems involving concave-superlinear nonlinearities. Topological Methods in Nonlinear Analysis [online]. 11 December 2022, T. 60, nr 2, s. 581–600. [accessed 24.3.2023]. DOI 10.12775/TMNA.2022.011.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 60, No 2 (December 2022)

Section

Articles

License

Copyright (c) 2022 Thiago R. Cavalcante, Edcarlos D. Silva

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop