Topological Methods in Nonlinear Analysis Volume 60, No. 2, 2022, 581–600 DOI: 10.12775/TMNA.2022.011

O2022 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

FOURTH-ORDER ELLIPTIC PROBLEMS INVOLVING CONCAVE-SUPERLINEAR NONLINEARITIES

Edcarlos D. Silva — Thiago R. Cavalcante

ABSTRACT. The existence of solutions for a huge class of superlinear elliptic problems involving fourth-order elliptic problems defined on bounded domains under Navier boundary conditions is established. To this end we do not apply the well-known Ambrosetti–Rabinowitz condition. Instead, we assume that the nonlinear term is nonquadratic at infinity. Furthermore, the nonlinear term is a concave-superlinear function which can be indefinite in sign. In order to apply variational methods we employ some delicate arguments recovering some kind of compactness.

1. Introduction

In this work we consider the fourth-order elliptic problem

(1.1)
$$\begin{cases} \alpha \Delta^2 u + \beta \Delta u = a(x)|u|^{s-2}u + f(x,u) & \text{in } \Omega, \\ u = \Delta u = 0 & \text{on } \partial\Omega, \end{cases}$$

where $\Delta^2 = \Delta \circ \Delta$ is the biharmonic operator, N > 4, $\Omega \subset \mathbb{R}^N$ is a smooth bounded domain. We also assume that $a \in L^{\infty}(\Omega)$ and $s \in (1,2)$ with $\alpha > 0$ and $\beta \in (-\infty, \alpha \lambda_1)$. The first eigenvalue for the linear problem $(-\Delta, H_0^1(\Omega))$ is

²⁰²⁰ Mathematics Subject Classification. 35J20, 35J25, 35J50.

Key words and phrases. Fourth-order elliptic problems; variational methods; concavesuperlinear elliptic problems; nonquadraticity condition.

The first author was partially supported by CNPq with grants 309026/2020-2 and 429955/2018-9. The first author was also partially supported by FAPDF with grant 00193-00000229/2021-21.

The second author was partially supported by PROPESQ/UFT with grant 05/2021.