Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Some existence results for elliptic systems with exponential nonlinearities and convection terms in dimension two
  • Home
  • /
  • Some existence results for elliptic systems with exponential nonlinearities and convection terms in dimension two
  1. Home /
  2. Archives /
  3. Vol 60, No 2 (December 2022) /
  4. Articles

Some existence results for elliptic systems with exponential nonlinearities and convection terms in dimension two

Authors

  • Wei Liu

DOI:

https://doi.org/10.12775/TMNA.2022.025

Keywords

Galerkin method, Trudinger-Moser inequality, convection terms, exponential growth

Abstract

In this paper, we establish the existence of solutions to a class of elliptic systems. The nonlinearities include exponential growth terms and convection terms. The exponential growth term means it could be critical growth at $\infty$. The Trudinger-Moser inequality is used to deal with it. The convection term means it involves the gradient of unknown function. The strong convergence of sequences is employed to overcome the difficulties caused by convection terms. The variational methods are invalid and the Galerkin method and an approximation scheme are applied to obtain four different solutions. Our results supplements those from \cite{Araujo2018}.

References

C.O. Alves and G.M. Figueiredo, Existence of positive solution for a planar Schrödinger–Poisson system with exponential growth, J. Math. Phys.c 60 (2019), no. 1, 011503, 13.

H. Amann and M.G. Crandall, On some existence theorems for semilinear elliptic equations, Indiana Univ. Math. J. 27 (1978), no. 5, 779–790.

A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), no. 2, 519–543.

H. Brezis and R.E.L. Turner, On a class of superlinear elliptic problems, Comm. Partial Differential Equations 2 (1977), no. 6, 601–614.

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.

H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal. 10 (1986), no. 1, 55–64.

D.M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in R2 , Comm. Partial Differential Equations 17 (1992) no. 3–4, 407–435.

D. Cassani and C. Tarsi, Existence of solitary waves for supercritical Schrödinger systems in dimension two, Calc. Var. Partial Differential Equations 54 (2015), no. 2, 1673–1704.

A.L.A. de Araujo and L.F.O. Faria, Positive solutions of quasilinear elliptic equations with exponential nonlinearity combined with convection term, J. Differential Equations 267 (2019), no. 8, 4589–4608.

A.L.A. de Araujo and M. Montenegro, Existence of solution for a general class of elliptic equations with exponential growth, Ann. Mat. Pura Appl. (4) 195 (2016), no. 5, 1737–1748.

A.L.A. de Araujo and M. Montenegro, Existence of solution for a nonvariational elliptic system with exponential growth in dimension two, J. Differential Equations 264 (2018), no. 3, 2270–2286.

D.G. de Figueiredo, O.H. Miyagaki and B. Ruf, Elliptic equations in R2 with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations 3 (1995), no. 2, 139–153.

D.G. de Figueiredo, O.H. Miyagaki and B. Ruf, Corrigendum: “Elliptic equations in R2 with nonlinearities in the critical growth range”, Calc. Var. Partial Differential Equations 4 (1996), no. 2, 203.

L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, second edition, 2010.

F. Faraci, D. Motreanu and D. Puglisi, Positive solutions of quasilinear elliptic equations with dependence on the gradient, Calc. Var. Partial Differential Equations 54 (2015), no. 1, 525–538.

L.F.O. Faria, O.H. Miyagaki and D. Motreanu, Comparison and positive solutions for problems with the (p, q)-Laplacian and a convection term, Proc. Edinb. Math. Soc. (2) 57 (2014), no. 3, 687–698.

D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer–Verlag, Berlin, 2001, reprint of the 1998 edition.

D. Guo, Nonlinear Functional Analysis, Modern Mathematical Foundation, Higher Education Press, Beijing, third edition, 2015.

G. Jiang, Y. Liu and Z. Liu, Transition between nonlinear and linear eigenvalue problems, J. Differential Equations 269 (2020), no. 12, 10919–10936.

S. Kesavan, Topics in Functional Analysis and Applications, John Wiley & Sons, IncNew York, 1989.

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/1971), 1077–1092.

N.S. Papageorgiou, V.D. Rădulescu and D.D. Repovš, Nonlinear analysis—theory and methods, Springer Monographs in Mathematics, Springer, Cham, 2019.

N.S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483.

M. Willem, Functional Analysis, Fundamentals and Applications, Cornerstones, Birkhäuser–Springer, New York, 2013.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-12-10

How to Cite

1.
LIU, Wei. Some existence results for elliptic systems with exponential nonlinearities and convection terms in dimension two. Topological Methods in Nonlinear Analysis. Online. 10 December 2022. Vol. 60, no. 2, pp. 673 - 697. [Accessed 15 December 2025]. DOI 10.12775/TMNA.2022.025.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 60, No 2 (December 2022)

Section

Articles

License

Copyright (c) 2022 Wei Liu

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop