Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Absolute normalized norms in R^2 and Heinz means constant
  • Home
  • /
  • Absolute normalized norms in R^2 and Heinz means constant
  1. Home /
  2. Archives /
  3. Vol 60, No 2 (December 2022) /
  4. Articles

Absolute normalized norms in R^2 and Heinz means constant

Authors

  • Zhan-fei Zuo
  • Yi-min Huang

DOI:

https://doi.org/10.12775/TMNA.2022.003

Keywords

Heinz means constant, absolute normalized norm, convex function

Abstract

In this paper, we calculate the precise values of the Heinz means constant under the absolute normalized norms in $\mathbb{R}^2$. The conclusions do not only contain some previous results, but also give the exact values of the Heinz means constant for some new concrete Banach spaces.

References

J. Alonso and E. Llorens-Fuster, Geometric mean and triangles inscribed in a semicircle in Banach spaces, J. Math. Anal. Appl. 340 (2008), 1271–1283.

J. Banaś and K. Frączek, Deformation of Banach spaces, Comment. Math. Univ. Carolinae 34 (1993), 47–53.

M. Baronti, E. Casin and P. Papini, Triangles inscribed in a semicircle, in Minkowski plane, and in normed spaces, J. Math. Anal. Appl. 252 (2000), 121–146.

F. Bonsall and J. Duncan, Numerical Ranges II, London Mathematical Society Lecture Notes Series, vol. 10, Cambridge Univ. Press, New York, 1973.

J. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396–414.

M. Dinarvand, Heinz means and triangles inscribed in a semicircle in Banach spaces, Math. Inequal. Appl. 22 (2019), 275–290.

T. Ikeda and M. Kato, Notes on von Neumann–Jordan and James constants for absolute norms on R2 , Mediterr. J. Math. 11 (2014), 633–642.

M. Kato and L. Maligranda, On James and von Neumann–Jordan constants of Lorentz sequence spaces, J. Math. Anal. Appl. 258 (2001), 457–465.

M. Kato, L. Maligranda and Y. Takahashi, On James and Jordan–von Neumann constants and normal structure coefficient of Banach spaces, Studia Math. 144 (2001), 275–295.

E. Llorens-Fuster, E. Mazcuñán-Navarro and S. Reich, The Ptolemy and Zbăganu constants of normed spaces, Nonlinear Anal. 72 (2010), 3984–3993.

L. Nikolova and L. Persson, Some properties of X p spaces, Function Spaces (J. Musielak, H. Hudzik, R. Urbanski, eds.), Teubner–Texte zur Matematik 120 (1991), 174–185.

L. Persson, Some elementary inequalities in connection with X p spaces, Constructive Theory of Functions (B. Sendov, ed.), Publishing House of the Bulgarian Academy of Sciences, 1988, pp. 367–376.

S. Saejung, Another look at Cesàro sequence spaces, J. Math. Anal. Appl. 366 (2010), 530–537.

C. Yang, Jordan–von Neumann constant for Banaś–Frączek space, Banach J. Math. Anal. 8 (2014), no. 2, 185–192.

C. Yang, A note on Jordan–Von Neumann constant for Zp,q space, J. Math. Inequal. 2 (2015), 499–504.

C. Yang and H. Li, An inequality between Jordan–von Neumann constant and James constant, Appl. Math. Lett. 23 (2010), 277–281.

C. Yang and X. Yang, On the James type constant and von Neumann–Jordan constant for a class of Banaś-Frączek type spaces, J. Math. Inequal. 10 (2016), 551–558.

Z. Zuo, The normal structure and parametrized von Neumann–Jordan type constant, Acta Math. Sinica 63 (2020), 655–660.

Z. Zuo and C. Tang, On James and Jordan–von Neumann type constants and the normal structure in Banach spaces, Topol. Methods Nonlinear Anal. 49 (2017), 615–623.

Z. Zuo and C. Tang, On Jordan–von Neumann type constants and normal structure in Banach spaces, Acta Math. Sinica 60 (2017), 383–388.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-09-24

How to Cite

1.
ZUO, Zhan-fei & HUANG, Yi-min. Absolute normalized norms in R^2 and Heinz means constant. Topological Methods in Nonlinear Analysis [online]. 24 September 2022, T. 60, nr 2, s. 475–490. [accessed 24.3.2023]. DOI 10.12775/TMNA.2022.003.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 60, No 2 (December 2022)

Section

Articles

License

Copyright (c) 2022 Zhan-fei Zuo, Yi-min Huang

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop