Absolute normalized norms in R^2 and Heinz means constant
DOI:
https://doi.org/10.12775/TMNA.2022.003Keywords
Heinz means constant, absolute normalized norm, convex functionAbstract
In this paper, we calculate the precise values of the Heinz means constant under the absolute normalized norms in $\mathbb{R}^2$. The conclusions do not only contain some previous results, but also give the exact values of the Heinz means constant for some new concrete Banach spaces.References
J. Alonso and E. Llorens-Fuster, Geometric mean and triangles inscribed in a semicircle in Banach spaces, J. Math. Anal. Appl. 340 (2008), 1271–1283.
J. Banaś and K. Frączek, Deformation of Banach spaces, Comment. Math. Univ. Carolinae 34 (1993), 47–53.
M. Baronti, E. Casin and P. Papini, Triangles inscribed in a semicircle, in Minkowski plane, and in normed spaces, J. Math. Anal. Appl. 252 (2000), 121–146.
F. Bonsall and J. Duncan, Numerical Ranges II, London Mathematical Society Lecture Notes Series, vol. 10, Cambridge Univ. Press, New York, 1973.
J. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396–414.
M. Dinarvand, Heinz means and triangles inscribed in a semicircle in Banach spaces, Math. Inequal. Appl. 22 (2019), 275–290.
T. Ikeda and M. Kato, Notes on von Neumann–Jordan and James constants for absolute norms on R2 , Mediterr. J. Math. 11 (2014), 633–642.
M. Kato and L. Maligranda, On James and von Neumann–Jordan constants of Lorentz sequence spaces, J. Math. Anal. Appl. 258 (2001), 457–465.
M. Kato, L. Maligranda and Y. Takahashi, On James and Jordan–von Neumann constants and normal structure coefficient of Banach spaces, Studia Math. 144 (2001), 275–295.
E. Llorens-Fuster, E. Mazcuñán-Navarro and S. Reich, The Ptolemy and Zbăganu constants of normed spaces, Nonlinear Anal. 72 (2010), 3984–3993.
L. Nikolova and L. Persson, Some properties of X p spaces, Function Spaces (J. Musielak, H. Hudzik, R. Urbanski, eds.), Teubner–Texte zur Matematik 120 (1991), 174–185.
L. Persson, Some elementary inequalities in connection with X p spaces, Constructive Theory of Functions (B. Sendov, ed.), Publishing House of the Bulgarian Academy of Sciences, 1988, pp. 367–376.
S. Saejung, Another look at Cesàro sequence spaces, J. Math. Anal. Appl. 366 (2010), 530–537.
C. Yang, Jordan–von Neumann constant for Banaś–Frączek space, Banach J. Math. Anal. 8 (2014), no. 2, 185–192.
C. Yang, A note on Jordan–Von Neumann constant for Zp,q space, J. Math. Inequal. 2 (2015), 499–504.
C. Yang and H. Li, An inequality between Jordan–von Neumann constant and James constant, Appl. Math. Lett. 23 (2010), 277–281.
C. Yang and X. Yang, On the James type constant and von Neumann–Jordan constant for a class of Banaś-Frączek type spaces, J. Math. Inequal. 10 (2016), 551–558.
Z. Zuo, The normal structure and parametrized von Neumann–Jordan type constant, Acta Math. Sinica 63 (2020), 655–660.
Z. Zuo and C. Tang, On James and Jordan–von Neumann type constants and the normal structure in Banach spaces, Topol. Methods Nonlinear Anal. 49 (2017), 615–623.
Z. Zuo and C. Tang, On Jordan–von Neumann type constants and normal structure in Banach spaces, Acta Math. Sinica 60 (2017), 383–388.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Zhan-fei Zuo, Yi-min Huang

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0