Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On determining the homological Conley index of Poincaré maps in autonomous systems
  • Home
  • /
  • On determining the homological Conley index of Poincaré maps in autonomous systems
  1. Home /
  2. Archives /
  3. Vol 60, No 1 (September 2022) /
  4. Articles

On determining the homological Conley index of Poincaré maps in autonomous systems

Authors

  • Roman Srzednicki https://orcid.org/0000-0003-2179-4455

DOI:

https://doi.org/10.12775/TMNA.2022.006

Keywords

Poincaré map, isolated invariant set, index pair, Conley index

Abstract

A theorem on computation of the homological Conley index of an isolated invariant set of the Poincaré map associated to a section in a rotating local dynamical system $\phi$ is proved. Let $(N,L)$ be an index pair for a discretization $\phi^h$ of $\phi$, where $h> 0$, and let $S$ denote the invariant part of $N\setminus L$; it follows that the section $S_0$ of $S$ is an isolated invariant set of the Poincaré map. The theorem asserts that if the sections $N_0$ of $N$ and $L_0$ of $L$ are ANRs, the homology classes $[u_j]$ of some cycles $u_j$ form a basis of $H(N_0,L_0)$, and for some scalars $a_{ij}$, the cycles $u_j$ and $\sum a_{ij}u_i$ are homologous in the covering pair $\big(\widetilde N,\widetilde L\big)$ of $(N,L)$ and the homology relation is preserved in $\big(\widetilde N,\widetilde L\big)$ under the transformation induced by $\phi^t$ for $t\in [0,h]$ then the homological Conley index of $S_0$ is equal to the Leray reduction of the matrix $[a_{ij}]$. In particular, no information on the values of the Poincaré map or its approximations is required. In a special case of the system generated by a $T$-periodic non-autonomous ordinary differential equation with rational $T/h> 1$, the theorem was proved in the paper M.Mrozek, R.\ Srzednicki, and F.\ Weilandt, SIAM J. Appl. Dyn. Syst. {\bf 14} (2015), 1348-1386, and it motivated a construction of an algorithm for determining the index.

References

A. Baker, Lower bounds on entropy via the Conley index with application to time series, Topology Appl. 120 (2002), 333–354.

A. Dold, Lectures on Algebraic Topology, Springer–Verlag, Berlin, Heidelberg, and New York, 1972.

R. Frongillo and R. Treviño, Efficient automation of index pairs in computational Conley index theory, SIAM J. Appl. Dyn. Syst. 11 (2012), 82–109.

M. Mrozek, Index pairs and the fixed point index for semidynamical systems with discrete time, Fund. Math. 133 (1990), 179–194.

M. Mrozek, Leray functor and cohomological Conley index for discrete dynamical systems, Trans. Amer. Math. Soc. 318 (1990), 149–178.

M. Mrozek, The Conley index on compact ANR’s is of finite type, Results Math. 18 (1990), 306–313.

M. Mrozek, Open index pairs, the fixed point index and rationality of zeta functions, Ergodic Theory Dynam. Systems 10 (1990), 555–564.

M. Mrozek, Index pairs algorithms, Found. Comput. Math. 6 (2006), 457–493.

M. Mrozek, R. Srzednicki and F. Weilandt, A topological approach to the algorithmic computation of the Conley index for Poincaré maps, SIAM J. Appl. Dyn. Syst. 14 (2015), 1348–1386.

D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), 1–41.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-08-31

How to Cite

1.
SRZEDNICKI, Roman. On determining the homological Conley index of Poincaré maps in autonomous systems. Topological Methods in Nonlinear Analysis. Online. 31 August 2022. Vol. 60, no. 1, pp. 5 - 32. [Accessed 3 July 2025]. DOI 10.12775/TMNA.2022.006.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 60, No 1 (September 2022)

Section

Articles

License

Copyright (c) 2022 Roman Srzednicki

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop