Topological Methods in Nonlinear Analysis Volume 60, No. 1, 2022, 5–32 DOI: 10.12775/TMNA.2022.006

O2022 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

ON DETERMINING THE HOMOLOGICAL CONLEY INDEX OF POINCARÉ MAPS IN AUTONOMOUS SYSTEMS

Roman Srzednicki

Dedicated to the memory of Professor Andrzej Granas

ABSTRACT. A theorem on computation of the homological Conley index of an isolated invariant set of the Poincaré map associated to a section in a rotating local dynamical system ϕ is proved. Let (N, L) be an index pair for a discretization ϕ^h of ϕ , where h > 0, and let S denote the invariant part of $N \setminus L$; it follows that the section S_0 of S is an isolated invariant set of the Poincaré map. The theorem asserts that if the sections N_0 of N and L_0 of L are ANRs, the homology classes $[u_j]$ of some cycles u_j form a basis of $H(N_0, L_0)$, and for some scalars a_{ij} , the cycles u_j and $\sum a_{ij} u_i$ are homologous in the covering pair $(\widetilde{N}, \widetilde{L})$ of (N, L) and the homology relation is preserved in $(\widetilde{N}, \widetilde{L})$ under the transformation induced by ϕ^t for $t \in [0, h]$ then the homological Conley index of S_0 is equal to the Leray reduction of the matrix $[a_{ij}]$. In particular, no information on the values of the Poincaré map or its approximations is required. In a special case of the system generated by a $T\mbox{-}{\rm periodic}$ non-autonomous ordinary differential equation with rational T/h > 1, the theorem was proved in the paper M. Mrozek, R. Srzednicki, and F. Weilandt, SIAM J. Appl. Dyn. Syst. 14 (2015), 1348–1386, and it motivated a construction of an algorithm for determining the index.

²⁰²⁰ Mathematics Subject Classification. Primary: 37B30; Secondary: 37B35.

Key words and phrases. Poincaré map; isolated invariant set; index pair; Conley index. This research is partially supported by the Polish National Science Center under Grant No. 2014/14/A/ST1/00453.