The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2
DOI:
https://doi.org/10.12775/TMNA.2022.005Keywords
Borsuk-Ulam theorem, homotopy class, braid groups, surfacesAbstract
Let $M$ be a topological space that admits a free involution $\tau$, and let $N$ be a topological space. A homotopy class $\beta \in [ M,N ]$ is said to have {\it the Borsuk-Ulam property with respect to $\tau$} if for every representative map $f\colon M\to N$ of $\beta$, there exists a point $x \in M$ such that $f(\tau(x))= f(x)$. In this paper, we determine the homotopy class of maps from the $2$-torus $\mathbb{T}^2$ to the Klein bottle $\mathbb{K}^2$ that possess the Borsuk-Ulam property with respect to any free involution of $\mathbb{T}^2$ for which the orbit space is $\mathbb{K}^2$. Our results are given in terms of a certain family of homomorphisms involving the fundamental groups of $\mathbb{T}^2$ and $\mathbb{K}^2$. This completes the analysis of the Borsuk-Ulam problem for the case $M=\mathbb{T}^2$ and $N=\mathbb{K}^2$, and for any free involution $\tau$ of $\mathbb{T}^2$.References
A.P. Barreto, D.L. Gonçalves and D. Vendrúscolo, Free involutions on torus semibundles and the Borsuk–Ulam Theorem for maps into Rn , Hiroshima Math. J. 46 (2016), 255–270.
C. Biasi and D. de Mattos, A Borsuk–Ulam theorem for compact Lie group actions, Bull. Braz. Math. Soc. (N.S.) 37 (2006), 127–137.
K. Borsuk, Drei Sätze über die n-dimensionale Euklidische Sphäre, Fund. Math. 20 (1933), 177–190.
F. Cotrim and D. Vendrúscolo, The Nielsen Borsuk–Ulam number, Bull. Belg. Math. Soc. Simon Stevin 24 (2017), 613–619.
P.E. Desideri, P.L.Q. Pergher and D. Vendrúscolo, Some generalizations of the Borsuk–Ulam Theorem, Publ. Math. Debrecen 78 (2011), no. 3–4, 583–593.
A. Dold, Parametrized Borsuk–Ulam theorems, Comment. Math. Helv. 63 (1988), 275–285.
E. Fadell, Cohomological methods in nonfree G-spaces with applications to general Borsuk–Ulam theorems and critical point theorems for invariant functionals, Nonlinear Functional Analysis and its Applications (Maratea, 1985), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 173, Reidel, Dordrecht, 1986, pp. 1–45
E. Fadell and S. Husseini, Index theory for G-bundle pairs with applications to Borsuk–Ulam type theorems for G-sphere bundles, Nonlinear Analysis, World Sci. Publishing, Singapore, 1987, pp. 307–336.
D.L. Gonçalves, The Borsuk–Ulam theorem for surfaces, Quaest. Math. 29 (2006), 117–123.
D.L. Gonçalves and J. Guaschi, The Borsuk–Ulam theorem for maps into a surface, Top. Appl. 157 (2010), 1742–1759.
D.L. Gonçalves, J. Guaschi and V. C. Laass, The Borsuk–Ulam property for homotopy classes of selfmaps of surfaces of Euler characteristic zero, J. Fixed Point Theory Appl. 21 (2019), no. 65, 29 pp.
D.L. Gonçalves, J. Guaschi and V.C. Laass, The Borsuk–Ulam property for homotopy classes of maps from the torus to the Klein bottle, Topol. Methods Nonlinear Anal. 56 (2020), 529–558.
D.L. Gonçalves and A.P. dos Santos, Diagonal involutions and the Borsuk–Ulam property for product of surfaces, Bull. Braz. Math. Soc. New Series 50 (2019), 771–786.
M. Izydorek, Remarks on Borsuk–Ulam theorem for multivalued maps, Bull. Polish Acad. Sci. Math. 35 (1987), 501–504.
M. Izydorek and J. Jaworowski, Parametrized Borsuk–Ulam theorems for multivalued maps, Proc. Amer. Math. Soc. 116 (1992), 273–278.
W. Marzantowicz, A Borsuk–Ulam theorem for orthogonal T k and Zpr actions and applications, J. Math. Anal. Appl. 137 (1989), 99–121.
W. Marzantowicz, D. de Mattos and E.L. dos Santos, Bourgin–Yang version of the Borsuk–Ulam theorem for Zpk -equivariant maps, Algebr. Geom. Topol. 12 (2012), 2245–2258.
J. Matoušek, Using the Borsuk–Ulam Theorem, Universitext, Springer–Verlag, 2002.
H. Steinlein, Borsuk’s antipodal theorem and its generalizations and applications: a survey, Topological Methods in Nonlinear Analysis, Sém. Math. Sup. 95, Presses Univ. Montréal, Montreal, QC (1985), 166–235.
G.W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Mathematics, vol. 61, Springer–Verlag, 1978.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Daciberg Lima Gonçalves, John Guaschi, Vinicius Casteluber Laass

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0