Topological Methods in Nonlinear Analysis Volume 60, No. 2, 2022, 491–516 DOI: 10.12775/TMNA.2022.005

© 2022 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

THE BORSUK-ULAM PROPERTY FOR HOMOTOPY CLASSES OF MAPS FROM THE TORUS TO THE KLEIN BOTTLE PART $_2$

Daciberg Lima Gonçalves — John Guaschi Vinicius Casteluber Laass

ABSTRACT. Let M be a topological space that admits a free involution τ , and let N be a topological space. A homotopy class $\beta \in [M,N]$ is said to have the Borsuk–Ulam property with respect to τ if for every representative map $f \colon M \to N$ of β , there exists a point $x \in M$ such that $f(\tau(x)) = f(x)$. In this paper, we determine the homotopy class of maps from the 2-torus \mathbb{T}^2 to the Klein bottle \mathbb{K}^2 that possess the Borsuk–Ulam property with respect to any free involution of \mathbb{T}^2 for which the orbit space is \mathbb{K}^2 . Our results are given in terms of a certain family of homomorphisms involving the fundamental groups of \mathbb{T}^2 and \mathbb{K}^2 . This completes the analysis of the Borsuk–Ulam problem for the case $M = \mathbb{T}^2$ and $N = \mathbb{K}^2$, and for any free involution τ of \mathbb{T}^2 .

1. Introduction

The classical Borsuk–Ulam theorem states that for all $n \in \mathbb{N}$ and any continuous map $f: \mathbb{S}^n \to \mathbb{R}^n$, there exists a point $x \in \mathbb{S}^n$ such that f(-x) = f(x)

 $^{2020\} Mathematics\ Subject\ Classification.$ Primary: 55M20, 57M07; Secondary: 20F36. Key words and phrases. Borsuk–Ulam theorem; homotopy class; braid groups; surfaces.

This paper was completed during the Postdoctoral Internship of the third author at IME-USP from March 2020 to August 2021. He was supported by Capes/INCTMat project no. 8887.136371/2017-00-465591/2014-0.

The first author is partially supported by the Projeto Temático FAPESP, *Topologia Algébrica*, *Geométrica e Diferencial*, grant no. 2016/24707-4.