Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Embeddability of joins and products of polyhedra
  • Home
  • /
  • Embeddability of joins and products of polyhedra
  1. Home /
  2. Archives /
  3. Vol 60, No 1 (September 2022) /
  4. Articles

Embeddability of joins and products of polyhedra

Authors

  • Sergey A. Melikhov https://orcid.org/0000-0001-6833-8292

DOI:

https://doi.org/10.12775/TMNA.2022.004

Keywords

Polyhedron, embedding, join, the van Kampen obstruction

Abstract

We present a short proof of S. Parsa's theorem that there exists a compact $n$-polyhedron $P$, $n\ge 2$, non-embeddable in $\R^{2n}$, such that $P*P$ embeds in $\R^{4n+2}$. This proof can serve as a showcase for the use of geometric cohomology. We also show that a compact $n$-polyhedron $X$ embeds in $\R^m$, $m\ge {3(n+1)}/2$, if either \begin{itemize} \item $X*K$ embeds in $\R^{m+2k}$, where $K$ is the $(k-1)$-skeleton of the $2k$-simplex; or \item $X*L$ embeds in $\R^{m+2k}$, where $L$ is the join of $k$ copies of the $3$-point set; or \item $X$ is acyclic and $X\x\text{(triod)}^k$ embeds in $\R^{m+2k}$. \end{itemize}

References

M. Adachi, Embeddings and Immersions, 1984; English transl.: Transl. Math. Monogr., vol. 124, Amer. Math. Soc., 1993.

J.F. Adams, Prerequisites (on equivariant stable homotopy) for Carlsson’s lecture, Algebraic Topology (Aarhus, 1982), Lecture Notes in Math., vol. 1051, Springer, Berlin, 1984, pp. 483–532.

P.M. Akhmetiev and S.A. Melikhov, Projected and near-projected embeddings, Zap. Nauchn. Sem. POMI 498 (2020), 75–104; J. Math. Sci. 255 (2021), 155–174.

F.D. Ancel and C.R. Guilbault, Compact contractible n-manifolds have arc spines (n ≥ 5), Pacific J. Math. 168 (1995), 1–10.

M. Bestvina, M. Kapovich and B. Kleiner, Van Kampen’s embedding obstruction for discrete groups, Invent. Math. 150 (2002), 219–235.

S. Buoncristiano, C.P. Rourke and B.J. Sanderson, A Geometric Approach to Homology Theory, London Math. Soc. Lecture Note Series, vol. 18, Cambridge Univ. Press, 1976.

P.E. Conner and E.E. Floyd, Fixed point free involutions and equivariant maps, Bull. Amer. Math. Soc. 66 (1960), 416–441.

R.A. Fenn, Techniques of Geometric Topology, London Math. Soc. Lecture Note Series, vol. 57, Cambridge Univ. Press, 1983.

B. Grünbaum, Imbeddings of simplicial complexes, Comment. Math. Helv. 44 (1969), 502–513.

J.P. May, et al. Equivariant Homotopy and Cohomology Theory, CBMS Reg. Conf. Ser. in Math., vol. 91, Amer. Math. Soc., Providence, RI, 1996.

S.A. Melikhov, The van Kampen obstruction and its relatives, Tr. Mat. Inst. Steklova 266 (2009), 149–183; reprinted: Proc. Steklov Inst. Math. 266 (2009), 142–176; updated version: arxiv: math.GT/0612082v5 (2021).

S.A. Melikhov, Combinatorics of embeddings, arxiv: 1103.5457v2.

S.A. Melikhov and E.V. Shchepin, The telescope approach to embeddability of compacta, arXiv: math.GT/0612085v1.

S. Parsa, On the Smith classes, the van Kampen obstruction and embeddability of [3] ∗ K, arxiv: 2001.06478.

S. Parsa, Instability of the Smith index under joins and applications to embeddability, arxiv: 2103.02563.

S. Parsa and A. Skopenkov, On embeddability of joins and their ‘factors’, arxiv: 2003.12285.

D. Repovš, A.B. Skopenkov and E.V. Ščepin, On embeddability of X ×I into Euclidean space, Houston J. Math. 21 (1995), 199–204.

C.P. Rourke, Block structures in geometric and algebraic topology, Actes du Congrès International des Mathématiciens (Nice, 1970), Gauthier–Villars, Paris, 1971, pp. 127–132.

C.P. Rourke and B.J. Sanderson, Introduction to Piecewise-Linear Topology, Ergebn. der Math., vol. 69, Springer–Verlag, New York, 1972.

E.V. Volovikov and E.V. Shchepin, Antipodes and embeddings, Mat. Sb. 196 (2005), no. 1, 3–32; English transl.: Sb. Math. 196 (2005) 1–28.

C. Weber, Plongements de polyhèdres dans le domaine métastable, Comment. Math. Helv. 42 (1967), 1–27 (in French).

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-08-31

How to Cite

1.
MELIKHOV, Sergey A. Embeddability of joins and products of polyhedra. Topological Methods in Nonlinear Analysis. Online. 31 August 2022. Vol. 60, no. 1, pp. 185 - 201. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2022.004.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 60, No 1 (September 2022)

Section

Articles

License

Copyright (c) 2022 Sergey A. Melikhov

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop