Embeddability of joins and products of polyhedra
DOI:
https://doi.org/10.12775/TMNA.2022.004Keywords
Polyhedron, embedding, join, the van Kampen obstructionAbstract
We present a short proof of S. Parsa's theorem that there exists a compact $n$-polyhedron $P$, $n\ge 2$, non-embeddable in $\R^{2n}$, such that $P*P$ embeds in $\R^{4n+2}$. This proof can serve as a showcase for the use of geometric cohomology. We also show that a compact $n$-polyhedron $X$ embeds in $\R^m$, $m\ge {3(n+1)}/2$, if either \begin{itemize} \item $X*K$ embeds in $\R^{m+2k}$, where $K$ is the $(k-1)$-skeleton of the $2k$-simplex; or \item $X*L$ embeds in $\R^{m+2k}$, where $L$ is the join of $k$ copies of the $3$-point set; or \item $X$ is acyclic and $X\x\text{(triod)}^k$ embeds in $\R^{m+2k}$. \end{itemize}References
M. Adachi, Embeddings and Immersions, 1984; English transl.: Transl. Math. Monogr., vol. 124, Amer. Math. Soc., 1993.
J.F. Adams, Prerequisites (on equivariant stable homotopy) for Carlsson’s lecture, Algebraic Topology (Aarhus, 1982), Lecture Notes in Math., vol. 1051, Springer, Berlin, 1984, pp. 483–532.
P.M. Akhmetiev and S.A. Melikhov, Projected and near-projected embeddings, Zap. Nauchn. Sem. POMI 498 (2020), 75–104; J. Math. Sci. 255 (2021), 155–174.
F.D. Ancel and C.R. Guilbault, Compact contractible n-manifolds have arc spines (n ≥ 5), Pacific J. Math. 168 (1995), 1–10.
M. Bestvina, M. Kapovich and B. Kleiner, Van Kampen’s embedding obstruction for discrete groups, Invent. Math. 150 (2002), 219–235.
S. Buoncristiano, C.P. Rourke and B.J. Sanderson, A Geometric Approach to Homology Theory, London Math. Soc. Lecture Note Series, vol. 18, Cambridge Univ. Press, 1976.
P.E. Conner and E.E. Floyd, Fixed point free involutions and equivariant maps, Bull. Amer. Math. Soc. 66 (1960), 416–441.
R.A. Fenn, Techniques of Geometric Topology, London Math. Soc. Lecture Note Series, vol. 57, Cambridge Univ. Press, 1983.
B. Grünbaum, Imbeddings of simplicial complexes, Comment. Math. Helv. 44 (1969), 502–513.
J.P. May, et al. Equivariant Homotopy and Cohomology Theory, CBMS Reg. Conf. Ser. in Math., vol. 91, Amer. Math. Soc., Providence, RI, 1996.
S.A. Melikhov, The van Kampen obstruction and its relatives, Tr. Mat. Inst. Steklova 266 (2009), 149–183; reprinted: Proc. Steklov Inst. Math. 266 (2009), 142–176; updated version: arxiv: math.GT/0612082v5 (2021).
S.A. Melikhov, Combinatorics of embeddings, arxiv: 1103.5457v2.
S.A. Melikhov and E.V. Shchepin, The telescope approach to embeddability of compacta, arXiv: math.GT/0612085v1.
S. Parsa, On the Smith classes, the van Kampen obstruction and embeddability of [3] ∗ K, arxiv: 2001.06478.
S. Parsa, Instability of the Smith index under joins and applications to embeddability, arxiv: 2103.02563.
S. Parsa and A. Skopenkov, On embeddability of joins and their ‘factors’, arxiv: 2003.12285.
D. Repovš, A.B. Skopenkov and E.V. Ščepin, On embeddability of X ×I into Euclidean space, Houston J. Math. 21 (1995), 199–204.
C.P. Rourke, Block structures in geometric and algebraic topology, Actes du Congrès International des Mathématiciens (Nice, 1970), Gauthier–Villars, Paris, 1971, pp. 127–132.
C.P. Rourke and B.J. Sanderson, Introduction to Piecewise-Linear Topology, Ergebn. der Math., vol. 69, Springer–Verlag, New York, 1972.
E.V. Volovikov and E.V. Shchepin, Antipodes and embeddings, Mat. Sb. 196 (2005), no. 1, 3–32; English transl.: Sb. Math. 196 (2005) 1–28.
C. Weber, Plongements de polyhèdres dans le domaine métastable, Comment. Math. Helv. 42 (1967), 1–27 (in French).
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Sergey A. Melikhov
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0