Topological Methods in Nonlinear Analysis Volume 60, No. 1, 2022, 185–201 DOI: 10.12775/TMNA.2022.004

O2022 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

EMBEDDABILITY OF JOINS AND PRODUCTS OF POLYHEDRA

SERGEY A. MELIKHOV

ABSTRACT. We present a short proof of S. Parsa's theorem that there exists a compact *n*-polyhedron $P, n \geq 2$, non-embeddable in \mathbb{R}^{2n} , such that P * P embeds in \mathbb{R}^{4n+2} . This proof can serve as a showcase for the use of geometric cohomology. We also show that a compact *n*-polyhedron Xembeds in $\mathbb{R}^m, m \geq 3(n+1)/2$, if either

- X * K embeds in \mathbb{R}^{m+2k} , where K is the (k-1)-skeleton of the 2k-simplex; or
- X * L embeds in \mathbb{R}^{m+2k} , where L is the join of k copies of the 3-point set; or
- X is acyclic and $X \times (\text{triod})^k$ embeds in \mathbb{R}^{m+2k} .

1. Introduction

It was shown by Flores, van Kampen and Grünbaum [9] that every *n*-dimensional join of k_i -skeleta of $(2k_i + 2)$ -simplexes does not embed into \mathbb{R}^{2n} (see also [11, Examples 3.3, 3.5], [12], [20]). Some other k_i -polyhedra with this property are constructed in [12].

As noted by S. Parsa [15], it is implicit in a paper by Bestvina, Kapovich and Kleiner [5] that if compact polyhedra P^n and Q^m both have non-zero mod 2 van Kampen obstruction, then P * Q does not embed in $\mathbb{R}^{2(n+m+1)}$. An *n*dimensional polyhedron, non-embeddable in \mathbb{R}^{2n} but with vanishing mod 2 van Kampen obstruction was constructed by the author for each $n \geq 2$ [11], settling

²⁰²⁰ Mathematics Subject Classification. Primary: 57Q35; Secondary: 57N35.

Key words and phrases. Polyhedron; embedding; join; the van Kampen obstruction.