Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Weakly almost periodic functions invariant means and fixed point properties in locally convex topological vector spaces
  • Home
  • /
  • Weakly almost periodic functions invariant means and fixed point properties in locally convex topological vector spaces
  1. Home /
  2. Archives /
  3. Vol 60, No 1 (September 2022) /
  4. Articles

Weakly almost periodic functions invariant means and fixed point properties in locally convex topological vector spaces

Authors

  • Khadime Salame

DOI:

https://doi.org/10.12775/TMNA.2022.002

Keywords

Amenability, locally convex space, nonexpansive mapping, semigroup, (weakly) almost periodic function, weak topology

Abstract

In this paper, we study and establish a positive answer to a long-standing open problem raised by A.T.-M. Lau in 1976. It is about whether the left amenability property of the Banach algebra WAP($S$), of all weakly almost periodic functions, on a given semitopological semigroup $S$ is equivalent to the existence of a common fixed point of any separately weakly continuous and weakly quasi-equicontinuous nonexpansive action of $S$ on a nonempty weakly compact convex subset of a separated locally convex space. We establish here an affirmative answer; and among other things, we show that the affine counterpart of this question holds and also the AP($S$) formulation of this problem is true.

References

J.F. Berglund and K.H. Hofmann, Compact Semitopological Semigroups and Weakly Almost Periodic Functions, Springer–Verlag, Berlin, 1967.

J.F. Berglund, H.D. Junghenn and P. Milnes, Analysis on Semigroups, John Wiley and Sons, New York, 1989.

J.F. Berglund, H.D. Junghenn and P. Milnes, Compact right topological semigroups and generalizations of almost periodicity, Springer–Verlag, Berlin, Heidelberg, New York, 1978.

N. Bourbaki, Topological Vector Spaces, Masson, 1981.

R.B. Burckel, Weakly Almost Periodic Functions on Semigroups, Gordon and Breach, New York, 1970.

M.M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544.

S. Goldberg and P. Irwin, Weakly almost periodic vector-valued functions, Dissertationes Math. (Rozprawy Mat.) 157 (1979), 1–42.

E. Granirer and A.T. Lau, Invariant means on locally compact groups, Illinois J. Math. 15 (1971), 249–257.

R. Hsu, Topics on weakly almost periodic functions, PhD thesis, SUNY at Buffalo, (1985).

M. Kostić, Selected Topics in Almost Periodicity, De Gruyter, 2022.

A.T.-M. Lau, Some fixed point theorems and W *-algebras, Fixed Point Theory and Applications (S. Swaminathan, ed.), Academic Press, New York, 1976, pp. 121–129.

A.T.-M. Lau, Amenability and fixed point property for semigroup of nonexpansive mappings, Fixed Point Theory and Applications (M.A. Thera, J.B. Baillon, eds.), Pitman Res. Notes Math. Ser., Longman Sci.Tech., Harlow, 252 (1991) 303–313.

A.T.-M. Lau and Y. Zhang, Fixed point properties for semigroups of nonlinear mappings and amenability, J. Funct. Anal. 263 (2012), 2949–2977.

A.T.-M. Lau and Y. Zhang, Fixed point properties of semigroups of non-expansive mappings, J. Funct. Anal. 254 (2008), 2534–2554.

M. Levitan, Almost Periodic Functions, G.I.T.T.L., Moscow, 1959 (in Russian).

I. Namioka, Følner’s conditions for amenable semi-groups, Math. Scand. 15 (1964), 18–28.

K. Salame, On Lau’s conjecture II, Proc. Amer. Math. Soc. 148 (2020), 1999–2008.

K. Salame, Non-linear common fixed point properties of semitopological semigroups in uniformly convex spaces, J. Fixed Point Theory Appl. 19 (2017), 1041–1057.

E.Yu. Emel’yanov, Non-Spectral Asymptotic Analysis of OneParameter Operator Semigroups, Birkhäuser–Verlag, Basel, 2007.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-08-31

How to Cite

1.
SALAME, Khadime. Weakly almost periodic functions invariant means and fixed point properties in locally convex topological vector spaces. Topological Methods in Nonlinear Analysis. Online. 31 August 2022. Vol. 60, no. 1, pp. 135 - 152. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2022.002.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 60, No 1 (September 2022)

Section

Articles

License

Copyright (c) 2022 Khadime Salame

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop