Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Concentrating solutions for an anisotropic planar elliptic Neumann problem with Hardy-Hénon weight and large exponent
  • Home
  • /
  • Concentrating solutions for an anisotropic planar elliptic Neumann problem with Hardy-Hénon weight and large exponent
  1. Home /
  2. Archives /
  3. Vol 60, No 1 (September 2022) /
  4. Articles

Concentrating solutions for an anisotropic planar elliptic Neumann problem with Hardy-Hénon weight and large exponent

Authors

  • Yibin Zhang https://orcid.org/0000-0002-3370-806X

DOI:

https://doi.org/10.12775/TMNA.2022.001

Keywords

Concentrating solutions, anisotropic elliptic Neumann problem, Hardy-Hénon weight, large exponent

Abstract

Let $\Omega$ be a bounded domain in $\mathbb{R}^2$ with smooth boundary, we study the following anisotropic elliptic Neumann problem with Hardy-Hénon weight $$ \begin{cases} -\nabla(a(x)\nabla u)+a(x)u=a(x)|x-q|^{2\alpha}u^p,\ u> 0 & \text{in } \Omega, \\[1mm] \dfrac{\partial u}{\partial\nu}=0 & \text{on } \partial\Omega, \end{cases} $$% where $\nu$ denotes the outer unit normal vector to $\partial\Omega$, $q\in\overline{\Omega}$, $\alpha\!\in\!(-1,+\infty)\setminus\mathbb{N}$, $p> 1$ is a large exponent and $a(x)$ is a positive smooth function. We investigate the effect of the interaction between anisotropic coefficient $a(x)$ and singular source $q$ on the existence of concentrating solutions. We show that if $q\in\Omega$ is a strict local maximum point of $a(x)$, there exists a family of positive solutions with arbitrarily many interior spikes accumulating to $q$; while, if $q\in\partial\Omega$ is a strict local maximum point of $a(x)$ and satisfies $\langle\nabla a(q),\nu(q)\rangle=0$, such a problem has a family of positive solutions with arbitrarily many mixed interior and boundary spikes accumulating to $q$. In particular, we find that concentration at singular source $q$ is always possible whether $q\in\overline{\Omega}$ is an isolated local maximum point of $a(x)$ or not.

References

Adimurthi and G. Mancini, The Neumann problem for elliptic equations with critical nonlinearity, “A tribute in honour of G. Prodi”, Scuola Norm. Sup. Pisa (1991), 9–25.

O. Agudelo and A. Pistoia, Boundary concentration phenomena for the higherdimensional Keller–Segel system, Calc. Var. Partial Differential Equations 55, 132 (2016).

S. Baraket and F. Parcard, Construction of singular limits for a semilinear elliptic equation in dimension 2, Calc. Var. Partial Differential Equations 6 (1998), 1–38.

D. Chae and O. Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern–Simons theory, Comm. Math. Phys. 215 (2000), 119–142.

C.C. Chen and C.S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math. 55 (2002), 728–771.

W.X. Chen and C.M. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), 615–622.

D. Cao and E.S. Noussair, The effect of geometry of the domain boundary in an elliptic Neumann problem, Adv. Differential Equations 6 (2001), 931–958.

G. Cerami and J. Wei, Multiplicity of multiple interior peak solutions for some singularly perturbed Neumann problems, Internat. Math. Res. Notices 12 (1998), 601–626.

Y. Chang and H. Yang, Multiple blowing-up and concentrating solutions for Liouvilletype equations with singular sources under mixed boundary conditions, Bound. Value Probl. 2012, 33 (2012), 25 pp.

M. del Pino, F. Mahmoudi and M. Musso, Bubbling on boundary submanifolds for the Lin–Ni–Takagi problem at higher critical exponents, J. Eur. Math. Soc. 16 (2014), 1687–1748.

M. del Pino, M. Musso and A. Pistoia, Super-critical boundary bubbling in a semilinear Neumann problem, Ann. Inst. H. Poincaré Analyse Non Linéaire 22 (2005), 45–82.

S. Deng, F. Mahmoudi and M. Musso, Bubbling on boundary submanifolds for a semiliear Neumann problem near higher critical exponents, Discrete Contin. Dynam. Systems A 36 (2016), 3035–3076.

P. Esposito, Blowup solutions for a Liouville equation with singular data, SIAM J. Math. Anal. 36 (2005), 1310–1345.

P. Esposito, M. Musso and A. Pistoia, Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent, J. Differential Equations 227 (2006), 29–68.

P. Esposito, A. Pistoia and J. Wei, Concentrationg solutions for the Hénon equation in R2 , J. Anal. Math. 100 (2006), 249–280.

D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Reprint of the 1998 edition, Springer–Verlag, Berlin, 2001.

C. Gui and J. Wei, On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math. 52 (2000), 522–538.

C. Gui, J. Wei and M. Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), 249–289.

G. Hardy, Notes on some points in the integral calculus, Messenger Math. 48 (1919), 107–112.

M. Hénon, Numerical experiments on the spherical stellar systems, Astronomy and Astrophysics 24 (1973), 229–238.

E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoretical Biology 26 (1970), 399–415.

C.S. Lin, W.M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988), 1–27.

F. Mahmoudi and A. Malchiodi, Concentration on minimal submanifolds for a singularly perturbed Neumann problem, Adv. Math. 209 (2007), 460–525.

A. Malchiodi, Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains, Geom. Funct. Anal. 15 (2005), 1162–1222.

A. Malchiodi and M. Montenegro, Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math. 55 (2002), 1507–1568.

A. Malchiodi and M. Montenegro, Multidimensional boundary-layers for a singularly perturbed Neumann problem, Duke Math. J. 124 (2004), 105–143.

B. Manna and A. Pistoia, Boundary-layers for a Neumann problem at higher critical exponents, Boll. Unione Mat. Ital. 10 (2017), 355–368.

M. Musso and J. Wei, Stationary solutions to a Keller–Segel chemotaxis system, Asymptotic Anal. 49 (2006), 217–247.

W.M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 44 (1991), 819–851.

W.M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), 247–281.

J. Prajapat and G. Tarantello, On class of elliptic problems in R2 : symmetry and uniqueness results, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 967–985.

O. Rey, Boundary effect for an elliptic Neumann problem with critical nonlinearity, Comm. Partial Differential Equations 22 (1997), 1055–1139.

O. Rey and J. Wei, Blow-up solutions for an elliptic Neumann problem with sub-orsupcritical nonlinearity, II: N = 4, Ann. Inst. H. Poincaré Analyse Non Linéaire 22 (2005), 459–484.

L. Wang, Arbitrarily many solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity, Commun. Pure Appl. Anal. 9 (2010), 761–778.

X.J. Wang, Neumann problem of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations 93 (1991), 283–310.

J. Wei and S. Yan, Arbitrary many boundary peak solutions for an elliptic Neumann problem with critical growth, J. Math. Pures Appl. 88 (2007), 350–378.

D. Yafaev, Sharp constants in the Hardy–Rellich inequalities, J. Funct. Anal. 168 (1999) 121–144.

Y. Zhang and H. Yang, Mixed interior and boundary peak solutions of the Neumann problem for the Hénon equation in R2 , Electron. J. Differential Equations 76 (2015), 1–28.

Y. Zhang, Boundary separated and clustered layer positive solutions for an elliptic Neumann problem with large exponent, Communications in Contemporary Mathematics, 2021, DOI: 10.1142/S0219199721500887.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-08-31

How to Cite

1.
ZHANG, Yibin. Concentrating solutions for an anisotropic planar elliptic Neumann problem with Hardy-Hénon weight and large exponent. Topological Methods in Nonlinear Analysis. Online. 31 August 2022. Vol. 60, no. 1, pp. 33 - 97. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2022.001.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 60, No 1 (September 2022)

Section

Articles

License

Copyright (c) 2022 Yibin Zhang

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop