Topological Methods in Nonlinear Analysis Volume 60, No. 1, 2022, 33–97 DOI: 10.12775/TMNA.2022.001

O2022 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

CONCENTRATING SOLUTIONS FOR AN ANISOTROPIC PLANAR ELLIPTIC NEUMANN PROBLEM WITH HARDY–HÉNON WEIGHT AND LARGE EXPONENT

YIBIN ZHANG

ABSTRACT. Let Ω be a bounded domain in \mathbb{R}^2 with smooth boundary, we study the following anisotropic elliptic Neumann problem with Hardy–Hénon weight

$$\begin{cases} -\nabla(a(x)\nabla u) + a(x)u = a(x)|x-q|^{2\alpha}u^p, \ u > 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial\Omega, \end{cases}$$

where ν denotes the outer unit normal vector to $\partial\Omega$, $q \in \overline{\Omega}$, $\alpha \in (-1, +\infty) \setminus \mathbb{N}$, p > 1 is a large exponent and a(x) is a positive smooth function. We investigate the effect of the interaction between anisotropic coefficient a(x) and singular source q on the existence of concentrating solutions. We show that if $q \in \Omega$ is a strict local maximum point of a(x), there exists a family of positive solutions with arbitrarily many interior spikes accumulating to q; while, if $q \in \partial\Omega$ is a strict local maximum point of a(x) and satisfies $\langle \nabla a(q), \nu(q) \rangle = 0$, such a problem has a family of positive solutions with arbitrarily many mixed interior and boundary spikes accumulating to q. In particular, we find that concentration at singular source q is always possible whether $q \in \overline{\Omega}$ is an isolated local maximum point of a(x) or not.

²⁰²⁰ Mathematics Subject Classification. Primary: 35B25; Secondary: 35B38, 35J25. Key words and phrases. Concentrating solutions; anisotropic elliptic Neumann problem; Hardy–Hénon weight; large exponent.

This research is supported in part by NNSFC Grant 11671354.