The Choquard logarithmic equation involving a nonlinearity with exponential growth
DOI:
https://doi.org/10.12775/TMNA.2021.062Keywords
Choquard logarithmic equations, exponential growth, variational techniques, ground state solutionAbstract
In the present work, we are concerned with the Choquard Logarithmic equation $-\Delta u + au + \lambda (\ln|\cdot|\ast |u|^{2})u = f(u)$ in $ \mathbb{R}^2$, for $ a> 0 $, $ \lambda > 0 $ and a nonlinearity $f$ with exponential critical growth. We prove the existence of a nontrivial solution at the mountain pass level and a nontrivial ground state solution. Also, we provide these results under a symmetric setting, taking into account subgroups of $ O(2) $.References
C.O. Alves and G.M. Figueiredo, Existence of positive solution for a planar Schrödinger–Poisson system with exponential growth, J. Math. Phys. 60 (2019), 011503.
A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger–Poisson problem, Commun. Contemp. Math. 10 (2008), 391–404.
A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger–Maxwell equations, J. Math. Anal. Appl. 345 (2008), 90–108.
J. Bellazzini, L. Jeanjean and T. Luo, (2013) Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations, Proc. London Math. Soc. 107 (2013), 303–339, arXiv: 1111.4668.
D. Bonheure, S. Cingolani and J. Van Schaftingen, (2017) The logarithmic Choquard equation: Sharp asymptotics and nondegeneracy of the groundstate, J. Funct. Anal 272 (2017), 5255–5281.
D.M. Cao, Nontrivial solution of semilinear elliptic equations with critical exponent in R2 , Comm. Partial Differential Equations 17 (1992), 407–435.
D.M. Cao, S.J. Peng and Q.F. Wang, Pohozaev identities and their applications to nonlinear elliptic equations, Scientia Sinica Mathematica 46 (2016), 1649–1674.
S. Cingolani and L. Jeanjean, Stationary waves with prescribed L2 -norm for the planar Schrödinger–Poisson system, SIAM J. Math. Anal. 51 (2019), 3533–3568.
S. Cingolani and T. Weth, On the planar Schrödinger–Poisson system, Ann. Inst. H. Poincaré Non Linéar Anal. C 33 (2016), 169–197.
D.G. Costa, An Invitation to Variational Methods in Differential Equations, Birkhäuser, Boston, 2007.
T. D’Aprile and D. Mugnai, Non-existence results for the coupled Klein–Gordon–Maxwell equations, Adv. Nonlinear Stud. 4 (2004), 307–322.
J.M. do Ó, E. Medeiros and U. Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl. 345 (2008), 286–304.
J.M. do Ó, O.H. Miyagaki and M. Squassina, Nonautonomous fractional problems with exponential growth, Nonlinear Differential Equations and Applications No-DEA 22 (2015), 1395–1410.
M. Du and T. Weth, Ground states and high energy solutions of the planar Schrödinger–Poisson system, Nonlinearity 30 (2017), 3492–3515.
H. Fröhlich, Theory of electrical breakdown in Ionic crystals, Proceedings of the Royal Society of London. Series A – Mathematical and Physical Sciences 160 (1937), 230–241.
H. Fröhlich, Electrons in lattice fields, Adv. Phys. 3 (1954), 325–361.
Q. Guo and J. Wu, Existence of Solutions to the logarithmic Choquard equations in high dimensions, Bull. Malays. Math. Sci. Soc. 43 (2020), 1545–1553.
N. Lam and G. Lu, Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti–Rabinowitz condition, J. Geom. Anal. 24 (2014), 118–143.
G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti–Rabinowitz condition, Nonlinear Anal. 72 (2010), 4602–4613.
E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math. 57 (1977), 93–105.
E.H. Lieb, Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. of Math. 118 (1983), 349–374.
P.-L. Lions, Solutions of Hartree–Fock equations for Coulomb systems, Comm. Math. Phys. 109 (1987), 33–97.
J. Moser, A Sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077–1092.
R. Penrose, On gravity’s role in quantum state reduction, Gen. Relativity Gravitation 28 (1996), 581–600.
B. Ruf and F. Sani, Ground states for elliptic equations in R2 with exponential critical growth, Geometric Properties for Parabolic and Elliptic PDE’s (R. Magnanini, S. Sakaguchi and A. Alvino, eds.), vol. 2, Springer, Milan, pp. 251–267.
D. Ruiz, The Schrödinger–Poisson equation under the effect of a nonlinear local term, J. Funct. Anal. 237 (2006), 655–674.
J. Stubbe, Bound states of two-dimensional Schrödinger–Newton equations (2008) arXiv:0807.4059.
L. Wen, X.Tang and S. Chen, Ground state solutions to logarithmic Choquard equations in R3 , Math. Meth. Appl. Sci. (2020), mma.6186.
M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
A.J.C. Wilson, Untersuchungen über die Elektronentheorie der Kristalle by S.I. Pekar, Acta Crystallographica 8 (1995), 70–70.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Eduardo de S. Böer, Olímpio H. Miyagaki
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0