Sign-changing multi-bump solutions for Choquard equation with deepening potential well
DOI:
https://doi.org/10.12775/TMNA.2021.041Keywords
Choquard equation, sign-changing solutions, multiple solutionsAbstract
In this paper, we are concerned with the existence of sign-changing multi-bump solutions for the following nonlinear Choquard equation \begin{equation}\label{eq0.1} -\Delta u+(\lambda V(x)+1)u=(I_{\alpha}\ast|u|^p)|u|^{p-2}u \quad \text{in } \mathbb{R}^N, \end{equation} where $I_\alpha$ is the Riesz potential, $\lambda \in \mathbb{R}^{+}$, $ (N-4)^{+}< \alpha< N$, $2\le p < ({N+\alpha})/({N-2})$, and $V(x)$ is a nonnegative continuous function with a potential well $\Omega:= \rom{int}(V^{-1}(0))$ which possesses $k$ disjoint bounded components $\Omega_1, \ldots, \Omega_k$. We prove the existence of sign-changing multi-bump solutions for \eqref{eq0.1} if $\lambda$ is large enough.References
C.O. Alves, Multiplicity of multi-bump type nodal solutions for a class of elliptic problems in RN , Topol. Methods Nonlinear Anal. 34 (2009), 231–250.
C.O. Alves, F. Gao, M. Squassina and M. Yang, Singularly perturbed critical Choquard equations, J. Differential Equations, 263 (2017), 3943–3988.
C.O. Alves, A.B. Nóbrega and M. Yang, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differential Equations 55 (2016), no. 3, 48 pp.
T. Bartsch and Z.-Q. Wang, Multiple positive solutions for a nonlinear Schrödinger equation, Z. Angew. Math. Phys. 51 (2000), 366–384.
T. Bartsch, A. Pankov and Z.-Q. Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math. 3 (2001), 549–569.
M. Clapp and D. Salazar, Positive and sign changing solutions to a nonlinear Choquard equation, J. Math. Anal. Appl. 407 (2013), 1–15.
Y. Deng and W. Shuai, Sign-changing multi-bump solutions for Kirchhoff-type equations in R3 , Discrete Contin. Dyn. Syst. Ser. A 38 (2018), 3139–3168.
Y. Ding and K. Tanaka, Multiplicity of positive solutions of a nonlinear Schrödinger equation, Manus. Math. 112 (2003), 109–135.
M. Ghimenti, V. Moroz and J. Van Schaftingen, Least action nodal solutions for the quadratic Choquard equation, Proc. Amer. Math. Soc. 145 (2016), no. 2, 737–747.
M. Ghimenti and J. Van Schaftingen, Nodal solutions for the Choquard equation, J. Funct. Anal. 271 (2016), no. 2, 107–135.
C. Gui and H. Guo, Nodal solutions of a nonlocal Choquard equation in a bounded domain, Commun. Contemp. Math. (2019), 1950067.
C. Gui and H. Guo, On nodal solutions of the nonlinear Choquard equation, Adv. Nonlinear Stud. 19 (2019), no. 4, 677–691.
L. Guo, T.X. Hu, S. Peng and W. Shuai, Existence and uniqueness of solutions for Choquard equation involving Hardy–Littlewood–Sobolev critical exponent, Calc. Var. Partial Differential Equations 58 (2019), 34 pp.
E.H. Lieb, Existence and uniquenness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math. 57 (1976/1977), 93–105.
E.H. Lieb and B. Simon, The Hartree–Fock theory for Coulomb systems, Comm. Math. Phys. 53 (1977), 185–194.
P.-L. Lions, The Choquard equation and related questions, Nonlinear Anal. 4 (1980), 1063–1072.
L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal. 195 (2010), 455–467.
I.M. Moroz, R. Penrose and P. Tod, Spherically-symmetric solutions of the Schrödinger–Newton equations, Classical Quantum Gravity 15 (1998), 2733–2742.
V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal. 265 (2013), 153–184.
sc V. Moroz and J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc. 367 (2015), no. 9, 6557–6579.
V. Moroz and J. Van Schaftingen, Semi-classical states for the Choquard equation, Calc. Var. Partial Differential Equations 52 (2015), 199–235.
V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl. 19 (2017), 773–813.
S. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954.
S. Peng, W. Shuai and Q. Wang, Multiple positive solutions for linearly coupled nonlinear elliptic systems with critical exponent, J. Differential Equations 263 (2017), no. 1, 709–731.
M. Riesz, L’intégrale de Riemann–Liouville et le probléme de Cauchy, Acta Math. 81 (1949), 1–223.
Y. Sato and K. Tanaka, Sign-changing multi-bump solutions for nonlinear Schrödinger equations with steep potential wells, Trans. Amer. Math. Soc. 361 (2009), 6205–6253.
Z. Shen, F. Gao and M. Yang, On critical Choquard equation with potential well, Discrete Contin. Dyn. Syst. A 38 (2018), no. 7, 3669–3695.
Z. Tang, Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials, Commun. Pure Appl. Anal. 13 (2014), 237–248.
J. Wei and M. Winter, Strongly interacting bumps for the Schrödinger-Newton equations, J. Math. Phys. 50 (2009), no. 1, 012905.
M. Willem, Minimax Theorems, Birkhäuser, Basel, 1996.
H. Ye, The existence of least energy nodal solutions for some class of Kirchhoff equations and Choquard equations in RN , J. Math. Anal. Appl. 431 (2015), no. 2, 935–954.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Xiaolong Yang
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0