Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Nontrivial solutions for a class of gradient-type quasilinear elliptic systems
  • Home
  • /
  • Nontrivial solutions for a class of gradient-type quasilinear elliptic systems
  1. Home /
  2. Archives /
  3. Vol 59, No 2B (June 2022) /
  4. Articles

Nontrivial solutions for a class of gradient-type quasilinear elliptic systems

Authors

  • Anna Maria Candela https://orcid.org/0000-0002-6782-2119
  • Caterina Sportelli https://orcid.org/0000-0002-5221-5877

DOI:

https://doi.org/10.12775/TMNA.2021.047

Keywords

Gradient-type quasilinear elliptic system, p-Laplacian type operator, subcritical growth, weak Cerami-Palais-Smale condition, Ambrosetti-Rabinowitz condition, Mountain Pass theorem, even functional, pseudo-eigenvalue

Abstract

The aim of this paper is to investigate the existence of weak bounded solutions of the gradient-type quasilinear elliptic system \begin{equation}\label{aP}\tag{P} \begin{cases} - {\rm div} ( a_i(x, u_i, \nabla u_i) ) + A_{i, t} (x, u_i, \nabla u_i) = G_i(x, \bu) \hidewidth \\ &\hskip3cm \hbox{in $\Omega$ for $i\in\{1,\dots,m\}$,}\\ \bu = 0 &\hskip 3cm \hbox{on $\partial\Omega$,} \end{cases} \end{equation} with $m\geq 2$ and $\bu=(u_1,\dots, u_{m})$, where $\Omega\subset{\mathbb R}^N$ is an open bounded domain and some functions $A_i\colon \Omega\times{\mathbb R}\times{\mathbb R}^N\rightarrow{\mathbb R}$, $i\in\{1,\dots,m\}$, and $G\colon \Omega\times{\mathbb R}^m\rightarrow{\mathbb R}$ exist such that $a_i(x,t,\xi) = \nabla_{\xi} A_i(x,t,\xi)$, $A_{i, t} (x,t,\xi) = \frac{\partial A_i}{\partial t} (x,t,\xi)$, and $G_{i}(x,\bu) = \frac{\partial G}{\partial u_i}(x,\bu)$. We prove that, under suitable hypotheses, the functional ${\mathcal J}$ related to problem (P) is $\mathcal{C}^1$ on a ``good'' Banach space $X$ and satisfies the weak Cerami-Palais-Smale condition. Then, generalized versions of the Mountain Pass Theorems allow us to prove the existence of at least one critical point and, if additionally ${\mathcal J}$ is even, of infinitely many critical points.

References

A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.

G. Arioli and F. Gazzola, Existence and multiplicity results for quasilinear elliptic differential systems, Comm. Partial Differential Equations 25 (2000), 125–153.

P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity, Nonlinear Anal. 7 (1983), 981–1012.

L. Boccardo and G. de Figueiredo, Some remarks on a system of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl. 9 (2002), 309–323.

H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext Springer, New York, 2011.

A.M. Candela, E. Medeiros, G. Palmieri and K. Perera, Weak solutions of quasilinear elliptic systems via the cohomological index, Topol. Methods Nonlinear Anal. 36 (2010), 1–18.

A.M. Candela and G. Palmieri, Multiple solutions of some nonlinear variational problems, Adv. Nonlinear Stud. 6 (2006), 269–286.

A.M. Candela and G. Palmieri, Infinitely many solutions of some nonlinear variational equations, Calc. Var. Partial Differential Equations 34 (2009), 495–530.

A.M. Candela and G. Palmieri, Some abstract critical point theorems and applications, Dynamical Systems, Differential Equations and Applications (X. Hou, X. Lu, A. Miranville, J. Su and J. Zhu, eds.), Discrete Contin. Dynam. Syst. Suppl. 2009 (2009), 133–142.

A.M. Candela and G. Palmieri, Multiplicity results for some nonlinear elliptic problems with asymptotically p-linear terms, Calc. Var. Partial Differential Equations 56 (2017), article no. 72, 39 pp.

A.M. Candela, G. Palmieri and A. Salvatore, Multiple solutions for some symmetric supercritical problems, Commun. Contemp. Math. 22 (2020), Article 1950075 (20 pages).

A.M. Candela, A. Salvatore and C. Sportelli, Existence and multiplicity results for a class of coupled quasilinear elliptic systems of gradient type, Adv. Nonlinear Stud. 21 (2021), 461–488.

D. de Figueiredo, Nonlinear elliptic systems, An. Acad. Brasil. Ci. 72 (2000), 453–469.

D. de Figueiredo, J.M. do Ó and B. Ruf, Non-variational elliptic systems in dimension two: a priori bounds and existence of positive solutions, J. Fixed Point Theory Appl. 4 (2008), 77–96.

L.F.O. Faria, O.H. Miyagaki, D. Motreanu and M. Tanaka, Existence results for nonlinear elliptic equations with Leray–Lions operator and dependence on the gradient, Nonlinear Anal. 96 (2014), 154–166.

O.A. Ladyzhenskaya and N.N. Ural’tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.

P. Lindqvist, On the equation div(|∇u|p−2 ∇u) + λ|u|p−2 u = 0, Proc. Amer. Math. Soc. 109 (1990), 157–164.

B. Pellacci and M. Squassina, Unbounded critical points for a class of lower semicontinuous functionals, J. Differential Equations 201 (2004), 25–62.

K. Perera, R.P. Agarwal and D. O’Regan, Morse Theoretic Aspects of p-Laplacian Type Operators, Math. Surveys Monogr., vol. 161, Amer. Math. Soc., Providence RI, 2010.

P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math., vol. 65, Amer. Math. Soc., Providence, 1986.

J. Vélin and F. de Thélin, Existence and nonexistence of nontrivial solutions for some nonlinear elliptic systems, Rev. Mat. Univ. Complut. Madrid 6 (1993), 153–194.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-06-12

How to Cite

1.
CANDELA, Anna Maria and SPORTELLI, Caterina. Nontrivial solutions for a class of gradient-type quasilinear elliptic systems. Topological Methods in Nonlinear Analysis. Online. 12 June 2022. Vol. 59, no. 2B, pp. 957 - 986. [Accessed 2 July 2025]. DOI 10.12775/TMNA.2021.047.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 2B (June 2022)

Section

Articles

License

Copyright (c) 2022 Anna Maria Candela, Caterina Sportelli

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop