Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Analytical and computational results for the decay of solutions of a damped wave equation with variable-exponent nonlinearities
  • Home
  • /
  • Analytical and computational results for the decay of solutions of a damped wave equation with variable-exponent nonlinearities
  1. Home /
  2. Archives /
  3. Vol 59, No 2B (June 2022) /
  4. Articles

Analytical and computational results for the decay of solutions of a damped wave equation with variable-exponent nonlinearities

Authors

  • Salim A. Messaoudi https://orcid.org/0000-0003-1061-0075
  • Mostafa Zahri https://orcid.org/0000-0002-4280-9321

DOI:

https://doi.org/10.12775/TMNA.2021.039

Keywords

Variable exponent, exponential decay, polynomial decay, wave, strong daming

Abstract

With the advancement of science and technology, many physical and engineering models require more sophisticated mathematical functional spaces to be studied and well understood. For example, in fluid dynamics, electrorheological fluids (smart fluids) have the property that the viscosity changes (often drastically) when exposed to an electrical field. The Lebesgue and Sobolev spaces with variable exponents proved to be efficient tools to study such problems as well as other models like the image processing. In this work, we consider the following nonlinear wave equation with variable exponents: \[ u_{tt}-\Delta u-\Delta u_{t}+|u_{t}|^{m(\cdot)-2}u_{t}=0, \quad \text{in }\Omega \times (0,T), \] where $\Omega $ is a bounded domain and $T> 0$, and show that weak solutions decay exponentially or polynomially depending on the range of the variable exponent $m$. We also give two numerical examples to illustrate our theoretical results.

References

M. Afilal, A. Guesmia, A. Soufyane and M. Zahri, On the exponential and polynomial stability for a linear Bresse system, Math. Methods Appl. Sci. 43, (2020), no. 5, 2626–2645.

S. Antontsev, Wave equation with p(x, t)-Laplacian and damping term: blow-up of solutions, C.R. Mec. 339 (2011), no. 12, 751–755.

S. Antontsev and J. Ferreira, Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions, Nonlinear Anal. Theory Methods Appl. 93 (2013), 62–77.

S. Antontsev and S. Shmarev, Evolution PDEs with nonstandard growth conditions: existence, uniqueness, localization, blowup, Atlantis Studies in Differential Equations, vol. 4, Atlantis Press, Paris, 2015.

A. Benaissa and S.A. Messaoudi, Exponential decay of solutions of a nonlinearly damped wave equation, Nonlinear Differ. Equ. Appl. 12 (2006), no. 4, 391–399.

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), no. 4, 1383–1406.

S. Ghegal, I. Hamchi and S.A. Messaoudi , Global existence and stability of a nonlinear wave equation with variable-exponent nonlinearities, Appl. Anal. 99 (2020), no. 8, 1333–1343.

B. Guo and W. Gao, Blow-up of solutions to quasilinear hyperbolic equations with p(x, t)Laplacian and positive initial energy, C.R. Mec. 342 (2014), no. 9, 513–519.

J.H. Hassan, S.A. Messaoudi and M. Zahri, Existence and new general decay results for a viscoelastic-type Timoshenko system, Z. Anal. Anwend. 39 (2020), no. 2, 185–222.

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson–John Wiley, Paris, 1994.

D. Lars, P. Harjulehto, P. Hasto and M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer–Verlag, Berlin, Heidelberg, 2011.

I. Lasiecka, Stabilization of wave and plate-like equation with nonlinear dissipation on the boundary, J. Differential Equations 79 (1989), 340–381.

I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differential Integral Equations 6 (1993), no. 3, 507–533.

P. Martinez, A new method to obtain decay rate estimates for dissipative systems with localized damping, Rev. Mat. Complut. 12 (1999), no. 1, 251–283.

S.A. Messaoudi, J.H. Al-Smail and A.A. Talahmeh, Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities, Comput. Math. Appl. 76 (2018), 1863–1875.

S.A. Messaoudi and A.A. Talahmeh, A blow-up result for a nonlinear wave equation with variable-exponent nonlinearities, Appl. Anal. 96 (2017), no. 9, 1509–1515.

S.A. Messaoudi and A.A. Talahmeh, A blow-up result for a quasilinear wave equation with variable- exponent nonlinearities, Math. Meth. Appl. Sci. 40 (2017), 6976–6986.

S.A. Messaoudi and A.A. Talahmeh, On wave equation: Review and recent results, Arab. J. Math.7 (2018), 113–145.

S.A. Messaoudi, A.A. Talahmeh and J.H. Al-Smail, Nonlinear damped wave equation: existence and blow-up, Comput. Math. Appl., DOI: 10.1016/j.camwa.2017.07.048.

M.I. Mustafa and S.A. Messaoudi, General energy decay rates for a weakly damped wave equation, Commun. Math. Anal. 9 (2010), no. 2, 67–76.

M. Nakao, A difference inequality and its applications to nonlinear evolution equations, J. Math. Soc. Japan 30 (1978), 747–762.

M. Nakao, Remarks on the existence and uniqueness of global decaying solutions of the nonlinear dissipative wave equations, Math Z. 206 (1991), 265–275.

M. Nakao, Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Ann. 305 (1996), no. 3, 403–417.

E. Zuazua, Exponential decay for the semi-linear wave equation with locally distributed damping, Comm. Partial Differential Equations 15 (1990), 205–235.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-06-12

How to Cite

1.
MESSAOUDI, Salim A. and ZAHRI, Mostafa. Analytical and computational results for the decay of solutions of a damped wave equation with variable-exponent nonlinearities. Topological Methods in Nonlinear Analysis. Online. 12 June 2022. Vol. 59, no. 2B, pp. 851 - 866. [Accessed 2 July 2025]. DOI 10.12775/TMNA.2021.039.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 2B (June 2022)

Section

Articles

License

Copyright (c) 2022 Salim A. Messaoudi, Mostafa Zahri

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop