Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A Kirchhoff type elliptic systems with exponential growth nonlinearities
  • Home
  • /
  • A Kirchhoff type elliptic systems with exponential growth nonlinearities
  1. Home /
  2. Archives /
  3. Vol 59, No 2B (June 2022) /
  4. Articles

A Kirchhoff type elliptic systems with exponential growth nonlinearities

Authors

  • Xingliang Tian https://orcid.org/0000-0003-0591-9860

DOI:

https://doi.org/10.12775/TMNA.2021.035

Keywords

Kirchhoff type elliptic systems, exponential growth nonlinearity, mountain-pass theorem, Trudinger-Moser inequality

Abstract

In this paper we are interested in the existence of solutions for the following Kirchhoff type elliptic systems \begin{equation*} \begin{cases} \displaystyle -M\Bigg(\sum^m_{j=1}\|u_j\|^2\Bigg)\Delta u_i=f_i(x,u_1,\ldots,u_m) &\mbox{in } \Omega,\\%[2mm] u_1=\ldots=u_m=0 &\mbox{on } \partial\Omega, \end{cases} \end{equation*} where $\Omega$ is a bounded domain in $\mathbb{R}^2$, $M$ is a Kirchhoff type function, $\|u_i\|^2:=\int_\Omega|\nabla u_i|^2{d}x$, $f_i$ behaves like $\exp(\beta s^2)$ when $|s|\rightarrow \infty$ for some $\beta> 0$, $i=1,\ldots,m$. By variational methods with the Trudinger-Moser inequality, we obtain the existence of solutions for the above systems.

References

Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the N -Laplacian, Ann. Sc. Norm. Super. Pisa Cl. Sci. 17 (1990), 393–413.

Adimurthi and Y. Yang, An interpolation of Hardy inequality and Trudinger–Moser inequality in RN and its applications, Int. Math. Res. Notices 13 (2010), 2394–2426.

F.S.B. Albuquerque, Standing wave solutions for a class of nonhomogeneous systems in dimension two, Complex Var. Elliptic Equ. 61 (2016), no. 8, 1157–1175.

S. Aouaoui, A multiplicity result for some nonlocal eigenvalue problem with exponential growth condition, Nonlinear Anal. 125 (2015), 626–638.

R. Arora, J. Giacomoni, T. Mukherjee and K. Sreenadh, n-Kirchhoff–Choquard equations with exponential nonlinearity, Nonlinear Anal. 186 (2019), 113–144.

R. Arora, J. Giacomoni, T. Mukherjee and K. Sreenadh, Adams–Moser–Trudinger inequality in the Cartesian product of Sobolev spaces and its applications, Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser. A Mat. 114 (2020), no. 3, 1–26.

H. Berestycki and P.L. Lions, Nonlinear scalar field equations, I. Existence of ground state, Arch. Ration. Mech. Anal. 82 (1983), 313–346.

J. Chabrowski, Variational methods for potential operator equations. With applications to nonlinear elliptic equations, de Gruyter Studies in Mathematics, vol. 24, Walter de Gruyter, Berlin, 1997.

W. Chen, Existence of solutions for fractional p-Kirchhoff type equations with a generalized Choquard nonlinearities, Topol. Methods Nonlinear Anal. 54 (2019), 773–791.

W. Chen and F. Yu, On a fractional Kirchhoff type problem with critical exponential growth nonlinearity, Appl. Math. Lett. 105 (2020), 106279.

W. Chen and F. Yu, On a nonhomogeneous Kirchhoff-type elliptic problem with critical exponential in dimension two, Appl. Anal. (2020), 1-16.

D.G de Figueiredo, J.M. do Ó and B. Ruf, On an inequality by Trudinger and J. Moser and related elliptic equations, Comm. Pure Appl. Math. 55 (2002), 135–152.

D.G. de Figueiredo, O.H. Miyagaki and B. Ruf, Elliptic equations in R2 with nonlinearities in the critical growth range, Calc. Var. 3 (1995), 139–153.

M. de Souza, On a singular class of elliptic systems involving critical growth in R2 , Nonlinear Anal. Real World Appl. 12 (2011), no. 2, 1072–1088.

M. de Souza, On a class of nonhomogeneous elliptic equation on compact Riemannian manifold without boundary, Mediterr. J. Math. 15(3) (2018), 101.

J.M. do Ó, Semilinear Dirichlet problems for the N -Laplacian in RN with nonlinearities in the critical growth range, Differ. Integral Equ. 9 (1996), 967–979. [17] J. M. do Ó, E. Medeiros, U.B. Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl. 345 (2008), 286-304.

G.M. Figueiredo and U.B. Severo, Ground state solution for a Kirchhoff problem with exponential critical growth, Milan J. Math. 84 (2016), 23–39.

P. Lions, The concentration-compactness principle in the calculus of variations, The limit case I, Rev. Mat. Iberoamericana 1 (1985), 145–201.

Q. Li and Z. Yang, Multiple solutions for N -Kirchhoff type problems with critical exponential growth in RN , Nonlinear Anal. 117 (2015), 159–168.

P.K. Mishra, S. Goyal and K. Sreenadh, Polyharmonic Kirchhoff type equations with singular exponential nonlinearities, Commun. Pure Appl. Anal. 15 (2016), no. 5, 1689–1717.

J. Moser, A sharp form of an inequality by N. Trudinger, Ind. Univ. Math. J. 20 (1971), 1077–1092.

X. Mingqi, V. D. Rǎdulescu and B. Zhang, Fractional Kirchhoff problems with critical Trudinger–Moser nonlinearity, Calc. Var. Partial Differential Equations 58) (2019), no. 2, 57.

D. Naimen and C. Tarsi, Multiple solutions of a Kirchhoff type elliptic problem with the Trudinger–Moser growth, Adv. Differential Equations 22 (2017), 983–1012.

P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, vol. 65, Amer. Math. Soc., Providence, 1986.

Y. Yang, Existence of positive solutions to quasi-linear elliptic equations with exponential growth in the whole Euclidean space, J. Funct. Anal. 262 (2012), 1679–1704.

N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-03-13

How to Cite

1.
TIAN, Xingliang. A Kirchhoff type elliptic systems with exponential growth nonlinearities. Topological Methods in Nonlinear Analysis. Online. 13 March 2022. Vol. 59, no. 2B, pp. 757 - 777. [Accessed 4 July 2025]. DOI 10.12775/TMNA.2021.035.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 2B (June 2022)

Section

Articles

License

Copyright (c) 2022 Xingliang Tian

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop