Topological Methods in Nonlinear Analysis Volume 59, No. 2B, 2022, 757–777 DOI: 10.12775/TMNA.2021.035

O2022 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

KIRCHHOFF TYPE ELLIPTIC SYSTEMS WITH EXPONENTIAL GROWTH NONLINEARITIES

XINGLIANG TIAN

ABSTRACT. In this paper we are interested in the existence of solutions for the following Kirchhoff type elliptic systems

$$\begin{cases} -M\left(\sum_{j=1}^{m} \|u_j\|^2\right) \Delta u_i = f_i(x, u_1, \dots, u_m) & \text{in } \Omega, \\ u_1 = \dots = u_m = 0 & \text{on } \partial\Omega, \end{cases}$$

where Ω is a bounded domain in \mathbb{R}^2 , M is a Kirchhoff type function, $||u_i||^2 := \int_{\Omega} |\nabla u_i|^2 dx$, f_i behaves like $\exp(\beta s^2)$ when $|s| \to \infty$ for some $\beta > 0, i = 1, \ldots, m$. By variational methods with the Trudinger–Moser inequality, we obtain the existence of solutions for the above systems.

1. Introduction

In the last decades, a great attention has been focused on the study of problems involving exponential growth nonlinearities, which is related to the famous Trudinger–Moser inequality. Let Ω be a bounded domain in \mathbb{R}^2 , and denote with $H_0^1(\Omega)$ the standard first order Sobolev space given by

$$H_0^1(\Omega) = \operatorname{cl}\left\{ u \in C_0^\infty(\Omega) : \int_{\Omega} |\nabla u|^2 \, dx < \infty \right\}, \qquad \|u\| = \left(\int_{\Omega} |\nabla u|^2 \, dx\right)^{1/2}.$$

²⁰²⁰ Mathematics Subject Classification. 35J50, 35J57, 35Q60.

Key words and phrases. Kirchhoff type elliptic systems; exponential growth nonlinearity; mountain-pass theorem; Trudinger-Moser inequality.

The author was supported by National Natural Science Foundation of China 11971392, Natural Science Foundation of Chongqing, China cstc2019jcyjjqX0022.