Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Unbalanced fractional elliptic problems with exponential nonlinearity: subcritical and critical cases
  • Home
  • /
  • Unbalanced fractional elliptic problems with exponential nonlinearity: subcritical and critical cases
  1. Home /
  2. Archives /
  3. Vol 59, No 1 (March 2022) /
  4. Articles

Unbalanced fractional elliptic problems with exponential nonlinearity: subcritical and critical cases

Authors

  • Deepak Kumar
  • Vicenţiu D. Rădulescu https://orcid.org/0000-0003-4615-5537
  • Konijeti Sreenadh https://orcid.org/0000-0001-7953-7887

DOI:

https://doi.org/10.12775/TMNA.2021.026

Keywords

Nonlocal operators, fractional $(p, q)$-equation, singular exponential nonlinearity, Schwarz symmetrization, Moser-Trudinger inequality

Abstract

This paper deals with the qualitative analysis of solutions to the following $(p,q)$-fractional equation: \begin{equation*} (-\Delta)^{s_1}_{p}u+(-\Delta)^{s_2}_{q}u+V(x) \big(|u|^{p-2}u+|u|^{q-2}u\big) = K(x)\frac{f(u)}{|x|^\ba} \quad \text{in } \mathbb R^N, \end{equation*} where $1< q< p$, $0< s_2\leq s_1< 1$, $ps_1=N$, $\ba\in[0,N)$, and $V,K\colon \mathbb R^N\to\mathbb R$, $f\colon \mathbb R\to \mathbb R$ are continuous functions satisfying some natural hypotheses. We are concerned both with the case when $f$ has a subcritical growth and with the critical framework with respect to the exponential nonlinearity. By combining a Moser-Trudinger type inequality for fractional Sobolev spaces with Schwarz symmetrization techniques and related variational and topological methods, we prove the existence of nonnegative solutions.

References

Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the N -Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17 (1990), no. 4, 393–413.

Adimurthi and K. Sandeep, A singular Moser–Trudinger embedding and its applications, NoDEA Nonlinear Differential Equations Appl.13 (2007), 585–603.

Adimurthi and Y. Yang, An interpolation of Hardy inequality and Trudinger–Moser inequality in RN and its applications, Int. Math. Res. Not. IMRN 13 (2010), 2394–2426.

F.J. Almgren and E.H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc. 2 (1989), 683–773.

C. Alves and V.D. Rădulescu, The Lane–Emden equation with variable double-phase and multiple regime, Proc. Amer. Math. Soc. 148 (2020), no. 7, 2937–2952.

V. Ambrosio and V.D. Rădulescu, Fractional double-phase patterns: concentration and multiplicity of solutions, J. Math. Pures Appl. (9) 142 (2020), 101–145.

A. Bahrouni, V.D. Rădulescu and D.D. Repovš, Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves, Nonlinearity 32 (2019), no. 7, 2481–2495.

J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1976/77), no. 4, 337–403.

J.M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. Roy. Soc. London Ser. A 306 (1982), no. 1496, 557–611.

P. Baroni, M. Colombo and G. Mingione, Nonautonomous functionals, borderline cases and related function classes, St. Petersburg Math. J. 27 (2016), no. 3, 347–379.

P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations 57 (2018), no. 2, 1–48.

L. Beck and G. Mingione, Lipschitz bounds and nonuniform ellipticity, Comm. Pure Appl. Math. 73 (2020), no. 5, 944–1034.

F. Brock, A general rearrangement inequality á la Hardy–Littlewood, Journal of Inequalities and Applications 5 (2000), 309–320.

M. de Souza and Y. Lisley, On nonlinear perturbations of a periodic fractional Schrödinger equation with critical exponential growth, Math. Nachr. 289 (2016), no. 5–6, 610–625.

M. de Souza and J.M. do Ó, On a singular and nonhomogeneous N-Laplacian equation involving critical growth, J. Math. Anal. Appl. 380 (2011), 241–263.

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521–573.

J. M. do Ó and J.C. de Albuquerque, Coupled elliptic systems involving the square root of the Laplacian and Trudinger–Moser critical growth, Differential Integral Equations 31 (2018), no. 5–6, 403–434.

J.M. do Ó, O.H. Miyagaki and M. Squassina, Nonautonomous fractional problems with exponential growth, Nonlinear Differential Equations and Applications 22 (2015), 1395–1410.

G.M. Figueiredo and F. Nunes, Existence of positive solutions for a class of quasilinear elliptic problems with exponential growth via the Nehari manifold method, Rev. Mat. Comput. 32 (2019), 1–18.

G.M. Figueiredo and V.D. Rădulescu, Positive solutions of the prescribed mean curvature equation with exponential critical growth, Ann. Matematica Math. Pura Appl. 200 (2021), 2213–2233.

A. Fiscella and P. Pucci, (p, N ) equations with critical exponential nonlinearities in RN , J. Math. Anal. Appl. 501 (2019), 123379.

N. Fusco and C. Sbordone, Some remarks on the regularity of minima of anisotropic integrals, Comm. Partial Differential Equations 18 (1993), no. 1–2, 153–167.

J. Giacomoni, P.K. Mishra and K. Sreenadh, Fractional elliptic equations with critical exponential nonlinearity, Adv. Nonlinear Anal. 5 (2016), 57–74.

J. Giacomoni, S. Prashanth and K. Sreenadh, A global multiplicity result for N Laplacian with critical nonlinearity of concave-convex type, J. Differential Equations 232 (2007), 544–572.

D. Goel, D. Kumar and K. Sreenadh, Regularity and multiplicity results for fractional (p, q)-Laplacian equation, Commun. Contemp. Math. 22 (2020), no. 8, 37 pp.

S. Goyal and K. Sreenadh, The Nehari manifold approach for N -Laplace equation with singular and exponential nonlinearities in RN , Commun. Contemp. Math. 17 (2015), 1450011.

C. Ji and V.D. Rădulescu, Multi-bump solutions for the nonlinear magnetic Schrödinger equation with exponential critical growth in R2 , Manuscripta Math. 164 (2021), no. 3–4, 509–542.

D. Kumar, V.D. Rădulescu and K. Sreenadh, Singular elliptic problems with unbalanced growth and critical exponent, Nonlinearity 33 (2020), no. 7, 3336–3369.

S. Marano and S. Mosconi, Some recent results on the Dirichlet problem for (p, q)Laplacian equation, Discrete Contin. Dyn. Syst. Ser. S 11 (2018), 279–291.

P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986), 391–409.

P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differential Equations 90 (1991), 1–30.

P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), no. 1, 1–25.

L. Martinazzi, Fractional Adams–Moser–Trudinger type inequalities, Nonlinear Anal. 127 (2015), 263–278.

G. Mingione and V.D. Rădulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl. 501 (2021), 125197.

X. Mingqi, V.D. Rădulescu and B. Zhang, Fractional Kirchhoff problems with critical Trudinger–Moser nonlinearity, Calc. Var. Partial Differential Equations 58 (2019), Art. 57, 27 pp.

X. Mingqi, V.D. Rădulescu and B. Zhang, Nonlocal Kirchhoff problems with singular exponential nonlinearity, Appl. Math. Optim. 84 (2020), 915–954.

O. H. Miyagaki and P. Pucci, Nonlocal Kirchhoff problems with Trudinger–Moser critical nonlinearities, Nonlinear Differ. Equ. Appl. 27 (2019), 26–27.

G. Molica Bisci, V.D. Rădulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, vol. 162, Cambridge University Press, Cambridge, 2016.

N.S. Papageorgiou, V.D. Rădulescu and D.D. Repovš, Double-phase problems and a discontinuity property of the spectrum, Proc. Amer. Math. Soc. 147 (2019), no. 7, 2899–2910.

N.S. Papageorgiou, V.D. Rădulescu and D.D. Repovš, Ground state and nodal solutions for a class of double phase problems, Z. Angew. Math. Phys. 71 (2020), no. 1, paper no. 15, 15 pp.

N.S. Papageorgiou, V.D. Rădulescu and D.D. Repovš, Existence and multiplicity of solutions for double-phase Robin problems, Bull. London Math. Soc. 52 (2020), 546–560.

E. Parini and B. Ruf, On the Moser–Trudinger inequality in fractional Sobolev Slobodeckij spaces, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 (2018), no. 2, 315–319.

P. Pucci, M. Xiang and B. Zhang, Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional p-Laplacian in RN , Calc. Var. Partial Differential Equations 54 (2015), 2785–2806.

M. Xiang, B. Zhang and D. Repovš, Existence and multiplicity of solutions for fractional Schrödinger–Kirchhoff equations with Trudinger–Moser nonlinearity, Nonlinear Anal. 186 (2019), 74–98.

Y. Yang, Existence of positive solutions to quasi-linear elliptic equations with exponential growth in the whole Euclidean space, J. Funct. Anal. 262 (2012), 1679–1704.

C. Zhang, Trudinger–Moser inequalities in fractional Sobolev–Slobodeckiı̆ spaces and multiplicity of weak solutions to the fractional-Laplacian equation, Adv. Nonlinear Stud. 19 (2019), 197–217.

Q. Zhang and V.D. Rădulescu, Double phase anisotropic variational problems and combined effects of reaction and absorption terms, J. Math. Pures Appl. (9) 118 (2018), 159–203.

V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675–710; English transl.: Math. USSRIzv. 29 (1987), no. 1, 33–66.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-03-13

How to Cite

1.
KUMAR, Deepak, RĂDULESCU, Vicenţiu D. and SREENADH, Konijeti. Unbalanced fractional elliptic problems with exponential nonlinearity: subcritical and critical cases. Topological Methods in Nonlinear Analysis. Online. 13 March 2022. Vol. 59, no. 1, pp. 277 - 302. [Accessed 4 July 2025]. DOI 10.12775/TMNA.2021.026.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 1 (March 2022)

Section

Articles

License

Copyright (c) 2022 Deepak Kumar, Vicenţiu D. Rădulescu, Konijeti Sreenadh

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop