Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Multiple solutions for biharmonic critical Choquard equation involving sign-changing weight functions
  • Home
  • /
  • Multiple solutions for biharmonic critical Choquard equation involving sign-changing weight functions
  1. Home /
  2. Archives /
  3. Vol 59, No 1 (March 2022) /
  4. Articles

Multiple solutions for biharmonic critical Choquard equation involving sign-changing weight functions

Authors

  • Anu Rani
  • Sarika Goyal

DOI:

https://doi.org/10.12775/TMNA.2021.025

Keywords

Biharmonic Choquard equation, critical exponent, sign-changing weight functions, Nehari manifold, concave-convex nonlinearities

Abstract

The purpose of this article is to deal with the following biharmonic critical Choquard equation \begin{align*} \begin{cases} \Delta^{2}u = \lambda f(x) |u|^{q-2}u+ g(x)\bigg(\displaystyle \int_{\Omega}\frac{g(y)|u(y)|^{2_\alpha^*}}{|x-y|^{\alpha}}dy\bigg)|u|^{2_\alpha^*-2}u & \text{in } \Omega,\\ u,\ \nabla u = 0 & \text{on } \partial\Omega, \end{cases} \end{align*} where $\Omega$ is a bounded domain in $\mathbb R^N$ with smooth boundary $\partial \Omega$, $N\geq 5$, $1< q < 2$, $0< \alpha < N$, $2_\alpha^*=({2N-\alpha})/({N-4})$ is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality and $\lambda > 0$ is a parameter. The functions $f, g\colon \overline {\Omega}\rightarrow \mathbb R$ are continuous sign-changing weight functions. Using the Nehari manifold and fibering map analysis, we prove the existence of two nontrivial solutions of the problem with respect to parameter $\lambda$.

References

C.O. Alves and M.A.S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differential Equations 254 (2013), 1977–1991.

A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519–543.

L. Battaglia and J.V. Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations in the plane, Adv. Nonlinear Stud. 17 (2017), 581–594.

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Pt. 1, Arch. Ration. Mech. Anal. 82 (1983), 313–346.

F. Bernis, J.G. Azorero and I. Peral, Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order, Adv. Differential Equations 1 (1996), 219–240.

L. Boccardo, M. Escobedo and I. Peral, A Dirichlet problem involving critical exponents, Nonlinear Anal. 24 (1995), 1639–1648.

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486–490.

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437–477.

K.J. Brown, The Nehari manifold for a semilinear elliptic equation involving a sublinear term, Calc. Var. Partial Differential Equations 22 (2004), 483–494.

K.J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations 193 (2003), 481–499.

A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 463–470.

Y. Chen and C. Liu, Ground state solutions for non-autonomous fractional Choquard equations, Nonlinearity 29 (2016), 1827–1842.

S. Cingolani, M. Clapp and S. Secchi, Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys. 63 (2012), 233–248.

P. d’Avenia, G. Siciliano and M. Squassina, On fractional Choquard equations, Math. Models Methods Appl. Sci. 25 (2015), 1447–1476.

Y. Deng and W. Shuai, Non-trivial solutions for a semilinear biharmonic problem with critical growth and potential vanishing at infinity, Proc. Roy. Soc. Edinburgh Sect. A 145 (2015), 281–299.

Y. Deng and G. Wang, On inhomogeneous biharmonic equations involving critical exponents, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), 925–946.

Y. Ding, F. Gao and M. Yang, Semiclassical states for Choquard type equations with critical growth: critical frequency case, Nonlinearity 33 (2020), 6695–6728.

P. Drábek and S.I. Pohozaev, Positive solutions for the p-Laplacian: application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), 703–726.

L. Du and M. Yang, Uniqueness and nondegeneracy of solutions for a critical nonlocal equation, Discrete Contin. Dyn. Syst. A 39 (2019), 5847–5866.

D.E. Edmunds, D. Fortunato and E. Jannelli, Critical exponents, critical dimensions and the biharmonic operator, Arch. Ration. Mech. Anal. 112 (1990), 269–289.

H. Egnell, Semilinear elliptic equations involving critical Sobolev exponents, Arch. Ration. Mech. Anal. 104 (1988), 27–56.

I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353.

J. Escobar, Positive solutions for some semilinear elliptic equations with critical Sobolev exponents, Comm. Pure Appl. Math. 40 (1987), 623–657.

A. Ferrero and G. Warnault, On solutions of second and fourth order elliptic equations with power-type nonlinearities, Nonlinear Anal. 70 (2009), 2889–2902.

F. Gao, E.D. da Silva, M. Yang and J. Zhou, Existence of solutions for critical Choquard equations via the concentration-compactness method, Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), 921–954.

F. Gao, Z. Shen and M. Yang, On the critical Choquard equation with potential well, Discrete Contin. Dyn. Syst. Ser. A 7 (2018), 3567–3593.

F. Gao and M. Yang, On nonlocal Choquard equations with Hardy–Littlewood–Sobolev critical exponents, J. Math. Anal. Appl. 448 (2017), 1006–1041.

F. Gao and M. Yang, On the Brézis–Nirenberg type critical problem for nonlinear Choquard equation, Sci. China Math. 61 (2018), 1219–1242.

F. Gao, M. Yang and J. Zhou, Existence of multiple semiclassical solutions for a critical Choquard equation with indefinite potential, Nonlinear Anal. 195 (2020), 111817.

F. Gazzola, H.C. Grunau and M. Squassina, Existence and nonexistence results for critical growth biharmonic elliptic equations, Calc. Var. Partial Differential Equations 18 (2003), 117–143.

F. Gazzola, H.C. Grunau and G. Sweers, Polyharmonic boundary value problems: positivity preserving and nonlinear higher order elliptic equations in bounded domains, Lecture Notes Maths. (1991).

F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Lineairé 23 (2006), 185–207.

F. Lan and X. He, The Nehari manifold for a fractional critical Choquard equation involving sign-changing weight functions, Nonlinear Anal. 180 (2019), 236–263.

S. Li, S. Wu and H. S. Zhou, Solutions to semilinear elliptic problems with combined nonlinearities, J Differential Equations 185 (2002), 200–224.

E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math. 57 (1977), 93–105.

E.H. Lieb and M. Loss, Analysis, vol. 14, Amer. Math. Soc., 2001.

P.L. Lions, The Choquard equation and related questions, Nonlinear Anal. 4 (1980), 1063–1072.

D. Lu and J. Xiao, Multiplicity of solutions for biharmonic elliptic systems involving critical nonlinearity, Bull. Korean Math. Soc. 50 (2013), 1693–1710.

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal. 195 (2010), 455–467.

V. Moroz and J.V. Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal. 265 (2013), 153–184.

V. Moroz and J.V. Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc. 367 (2015), 6557–6579.

V. Moroz and J.V. Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl. 19 (2017), 773–813.

T. Mukherjee and K. Sreenadh, Fractional Choquard equation with critical nonlinearities, Nonlinear Differ. Equ. Appl. 24 (2017), 1–34.

T.G. Myers, Thin films with high surface tension, SIAM Review 40 (1998), 441–462.

S.I. Pekar, Untersuchung Über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954.

X. Qian, J. Wang and M. Zhu, Multiple nontrivial solutions for a class of biharmonic elliptic equations with Sobolev critical exponent, Math. Probl. Eng. 2018 (2018), 1–12.

P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), 270–291.

T. Saanouni, Scattering threshold for the focusing Choquard equation, Nonlinear Differ. Equ. Appl. 26 (2019), 1–32.

Y. Sang, X. Luo and Y. Wang, The Choquard equation with weighted terms and Sobolev–Hardy exponent, J. Funct. Spaces 2018 (2018), 1–22.

Z. Shen, F. Gao, and M. Yang, Ground states for nonlinear fractional Choquard equations with general nonlinearities, Math. Methods Appl. Sci. 39 (2016), 4082–4098.

G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353–372.

G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 281–304.

T. Wang and T. Yi, Uniqueness of positive solutions of the Choquard type equations, Appl. Anal. 96 (2017), 409–417.

M. Willem, Functional Analysis: Fundamentals and Applications, vol. 14, Birkhäuser, 2013.

T.F. Wu, The Nehari manifold for a semilinear elliptic system involving sign-changing weight functions, Nonlinear Anal. 68 (2008), 1733–1745.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-03-06

How to Cite

1.
RANI, Anu and GOYAL, Sarika. Multiple solutions for biharmonic critical Choquard equation involving sign-changing weight functions. Topological Methods in Nonlinear Analysis. Online. 6 March 2022. Vol. 59, no. 1, pp. 221 - 260. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2021.025.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 1 (March 2022)

Section

Articles

License

Copyright (c) 2022 Anu Rani, Sarika Goyal

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop