Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Array
  • Strona domowa
  • /
  • Array
  1. Strona domowa /
  2. Archiwum /
  3. Vol 58, No 2 (December 2021) /
  4. Articles

Array

Autor

  • https://orcid.org/0000-0001-9414-7748
  • https://orcid.org/0000-0002-0997-5344

DOI:

https://doi.org/10.12775/TMNA.2020.074

Słowa kluczowe

Array

Abstrakt

Array

Bibliografia

E.A.M. Abreu and A.N. Carvalho, Lower semicontinuity of attractors for parabolic problems with Dirichlet boundary conditons in varying domains, Matemática Contemporânea 27 (2004), 37–51.

J.M. Arrieta, F.D.M. Bezerra and A. N. Carvalho, Rate of convergence of Attractors for some singular perturbed parabolic problems, Topol. Methods Nonlinear Anal. 41 (2013), 229–253.

J.M. Arrieta and A.N. Carvalho, Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, J. Differential Equations 199 (2004), 143–178.

J.M. Arrieta, A.N. Carvalho and A. Rodrı́guez-Bernal, Attractors for parabolic problems with nonlinear boundary bondition. Uniform bounds, Comm. Partial Differential Equations 25 (2000), 1–37.

A.N. Carvalho, J.A. Langa and J.C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, London, 2010.

A.N. Carvalho and L. Pires, Rate of convergence of attractors for singularly perturbed semilinear problems, J. Math. Anal. Appl. 452 (2017), 258–296.

A.N. Carvalho and L. Pires, Parabolic equations with localized large diffusion: rate of convergence of attractors, Topol. Methods Nonlinear Anal. 53 (2019), 1–23.

E.N. Dancer and D. Daners, Domain perturbation of elliptic equations subject to Robin boundary conditions, J. Differential Equations 74 (1997), 86–132.

D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, Springer–Verlag, New York, 1980.

D. Henry, Perturbation of the Boundary in Partial Differential Equations, Cambridge University Press, Cambridge, 1996.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2021-12-02

Jak cytować

1.
& . Topological Methods in Nonlinear Analysis [online]. 2 grudzień 2021, T. 58, nr 2, s. 441–452. [udostępniono 28.6.2025]. DOI 10.12775/TMNA.2020.074.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 58, No 2 (December 2021)

Dział

Articles

Licencja

Prawa autorskie (c) 2021 Array

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa