Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Componentwise localization of critical points for functionals defined on product spaces
  • Home
  • /
  • Componentwise localization of critical points for functionals defined on product spaces
  1. Home /
  2. Archives /
  3. Vol 58, No 1 (September 2021) /
  4. Articles

Componentwise localization of critical points for functionals defined on product spaces

Authors

  • Radu Precup https://orcid.org/0000-0003-0153-6168

DOI:

https://doi.org/10.12775/TMNA.2021.007

Keywords

Critical point, linking, minimum point, saddle point, minimax theorem, gradient type system

Abstract

A new notion of linking is introduced to treat minima as minimax points in a unitary way. Critical points are located in conical annuli making possible to obtain multiplicity. For functionals defined on a Cartesian product, the localization of critical points is given on components and the variational properties of the components can differ, part of them being of minimum type, others of mountain pass type.

References

H. Brezis and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939–964.

D.G. De Figueiredo, Lectures on the Ekeland Variational Principle with Applications and Detours, Tata Institute of Fundamental Research, Bombay, 1989.

K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.

Y. Jabri, The Mountain Pass Theorem, Cambridge Univ. Press, 2003.

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989.

S.G. Mikhlin, Linear Partial Differential Equations, Vysshaya Shkola, Moscow, 1977 (Russian).

R. Precup, Critical point theorems in cones and multiple positive solutions of elliptic problems, Nonlinear Anal. 75 (2012), 834–851.

R. Precup, On a bounded critical point theorem of Schechter, Stud. Univ. Babeş-Bolyai Math. 58 (2013), 87–95.

R. Precup, A variational analogue of Krasnosel’skiı̆’s cone fixed point theory, Nonlinear Analysis and Boundary Value Problems (I. Area et al., eds.), Springer Proceedings in Mathematics & Statistics, vol. 292, Springer, 2019, pp. 1–18.

R. Precup, P. Pucci and C. Varga, Energy-based localization and multiplicity of radially symmetric states for the stationary p-Laplace diffusion, Complex Var. Elliptic Equ. 65 (2020), 1198–1209.

R. Precup and C. Varga, Localization of positive critical points in Banach spaces and applications, Topol. Methods Nonlinear Anal. 49 (2017), 817–833.

P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series Math., vol. 65, Amer. Math. Soc., Providence, 1986.

M. Schechter, Linking Methods in Critical Point Theory, Birkhäuser, Boston, 1999.

M. Struwe, Variational Methods, Springer, Berlin, 1990.

E. Zeidler, Applied Functional Analysis: Applications to Mathematical Physics, Springer, Berlin, 1995.

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, vol. 24, Birkhäuser, Boston, 1996.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-09-12

How to Cite

1.
PRECUP, Radu. Componentwise localization of critical points for functionals defined on product spaces. Topological Methods in Nonlinear Analysis. Online. 12 September 2021. Vol. 58, no. 1, pp. 51 - 77. [Accessed 4 July 2025]. DOI 10.12775/TMNA.2021.007.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 58, No 1 (September 2021)

Section

Articles

License

Copyright (c) 2021 Topological Methods in Nonlinear Analysis

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop