Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Periodic solutions to reversible second order autonomous systems with commensurate delays
  • Home
  • /
  • Periodic solutions to reversible second order autonomous systems with commensurate delays
  1. Home /
  2. Archives /
  3. Vol 59, No 2A (June 2022) /
  4. Articles

Periodic solutions to reversible second order autonomous systems with commensurate delays

Authors

  • Zalman Balanov
  • Fulai Chen
  • Jing Guo
  • Wiesław Krawcewicz

DOI:

https://doi.org/10.12775/TMNA.2020.039

Keywords

Second order delay-differential equations, periodic solutions, commensurate delays, Brouwer equivariant degree, Burnside ring, reversible systems, equivariant systems

Abstract

Existence and spatio-temporal patterns of periodic solutions to second order reversible equivariant autonomous systems with commensurate delays are studied using the Brouwer $O(2) \times \Gamma \times \mathbb Z_2$-equivariant degree theory, where $O(2)$ is related to the reversing symmetry, $\Gamma$ reflects the symmetric character of the coupling in the corresponding network and $\mathbb Z_2$ is related to the oddness of the right-hand side. Abstract results are supported by a concrete example with $\Gamma = D_6$ - the dihedral group of order 12.

References

V.I. Arnold and M.B. Sevryuk, Oscillations and bifurcations in reversible systems, Nonlinear Phenomena in Plasma Physics and Hydrodynamics (R.Z. Sagdeev, ed.), Mir, Moscow, 1986, pp. 31–64.

Z. Balanov, W. Krawcewicz, S. Rybicki and H. Steinlein, A short treatise on the equivariant degree theory and its applications, J. Fixed Point Theory Appl. 8 (2010), 1–74.

Z. Balanov, W. Krawcewicz and H. Steinlein, Applied Equivariant Degree, AIMS Series on Differential Equations & Dynamical Systems, vol. 1, AIMS, Springfield, 2006.

Z. Balanov, W. Krawcewicz, Z. Li and M. Nguyen, Multiple solutions to implicit symmetric boundary value problems for second order ordinary differential equations (ODEs): Equivariant degree approach, Symmetry 4 (2013), 287–312.

Z. Balanov, W. Krawcewicz and M. Nguyen, Multiple solutions to symmetric boundary value problems for second order ODEs: equivariant degree approach, Nonlinear Anal. 94 (2014), 45–64.

Z. Balanov and H.P. Wu, Bifurcation of space periodic solutions in symmetric reversible FDEs, Differential Integral Equations, 30 (2017), 289–328.

M. Dabkowski, W. Krawcewicz, Y. Lv and H-P. Wu, Multiple periodic solutions for Γ-symmetric Newtonian systems, J. Differential Equations 263 (2017), 6684–6730.

J. Dugundji and A. Granas, Fixed point theory. I, Monografie Matematyczne [Mathematical Monographs], vol. 61, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1982.

R. Gaines and J. Mawhin, Coincidence Degree, and Nonlinear Differential Equations, Lect. Notes Math. vol. 568, Springer–Verlag, Berlin and New York, 1977.

M. Golubitsky, I.N. Stewart and D.G. Schaeffer, Singularities and Groups in Bifurcation Theory. II, Applied Mathematical Sciences, vol. 69, Springer–Verlag, Berlin and New York, 1988.

M. Golubitsky and I. Stewart, The Symmetry Perspective, Birkhäuser, Basel, Berlin, and Boston, 2002.

É. Goursat, Sur les substitutions orthogonales et les divisions régulières de l’espace, Annales Sci. Éc. Norm. Supér. 6 (1889), 9–102.

K. Gu, V.L. Kharitonov and J. Chen, Stability of Time-Delay Systems, Control Engineering, Birkhäuser, Boston, MA, 2003.

P. Hartman, Ordinary Differential Equations, John Wiley & Sons, 1964.

J. Ize and A. Vignoli, Equivariant Degree Theory, De Gruyter Series in Nonlinear Analysis and Applications, vol. 8, De Gruyter, Berlin and Boston, 2003.

W. Krawcewicz and J. Wu, Theory of Degrees with Applications to Bifurcations and Differential Equations, John Wiley & Sons, Inc., 1997.

W. Krawcewicz, H.P. Wu and S. Yu, Periodic solutions in reversible second order autonomous systems with symmetries, J. Nonlinear Convex Anal. 18 (2017), 1393–1419.

A. Kushkuley and Z. Balanov, Geometric Methods in Degree Theory for Equivariant Maps, Lecture Notes in Math., vol. 1632, Springer–Verlag, Berlin, 1996.

J.S.W. Lamb and J.A. Roberts, Time-reversal symmetry in dynamical systems: a survey, Phys. D 112 (1998), 1–39.

H-P. Wu, GAP program for the computations of the Burnside ring A(Γ × O(2)), https://bitbucket.org/psistwu/gammao2, developed at University of Texas at Dallas, 2016.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-06-07

How to Cite

1.
BALANOV, Zalman, CHEN, Fulai, GUO, Jing and KRAWCEWICZ, Wiesław. Periodic solutions to reversible second order autonomous systems with commensurate delays. Topological Methods in Nonlinear Analysis. Online. 7 June 2021. Vol. 59, no. 2A, pp. 475 - 498. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2020.039.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 2A (June 2022)

Section

Articles

License

Copyright (c) 2021 Topological Methods in Nonlinear Analysis

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop