Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

The Gut Microbiome in Athletes: Mechanisms, Training Adaptations, and Implications for Performance — A Comprehensive Review
  • Home
  • /
  • The Gut Microbiome in Athletes: Mechanisms, Training Adaptations, and Implications for Performance — A Comprehensive Review
  1. Home /
  2. Archives /
  3. Vol. 48 (2025) /
  4. Medical Sciences

The Gut Microbiome in Athletes: Mechanisms, Training Adaptations, and Implications for Performance — A Comprehensive Review

Authors

  • Magdalena Olszówka Stefan Cardinal Wyszyński Provincial Specialist Hospital SPZOZ in Lublin https://orcid.org/0009-0007-5196-3906
  • Wiktoria Oliwia Toczek Ludwik Rydygier Specialist Hospital in Cracow, os. Złotej Jesieni 1, 31-826 Kraków https://orcid.org/0009-0009-3530-6660
  • Klaudia Bogdan Ludwik Rydygier Specialist Hospital in Cracow, os. Złotej Jesieni 1, 31-826 Kraków https://orcid.org/0009-0003-7260-2799
  • Mikołaj Jankowski Ludwik Rydygier Specialist Hospital in Cracow, os. Złotej Jesieni 1, 31-826 Kraków https://orcid.org/0009-0009-6542-9143
  • Urszula Janicka Medical Doctor, Lower Silesian Center of Oncology, Pulmonology and Hematology, Plac Ludwika Hirszfelda 12, 53-413 Wrocław, Poland. https://orcid.org/0009-0001-7324-2137
  • Natalia Ciepluch Municipal Hospital No. 4 in Gliwice, Zygmunta Starego 20, 44-100 Gliwice https://orcid.org/0009-0005-1703-4674
  • Szymon Stanisław Słomiński University Clinical Hospital in Poznań, Przybyszewskiego 49, 60-355 Poznań https://orcid.org/0009-0006-0208-0608

DOI:

https://doi.org/10.12775/QS.2025.48.67288

Keywords

gut microbiome, athletic performance, exercise physiology, short chain-fatty acids (SCFAs), gut-muscle-axis, intestinal barrier, endurance training, HIIT, strength training, microbial diversity, sports nutrition

Abstract

Background
The gut microbiota is increasingly seen as a key regulator of functions relevant to athletic performance. Exercise alters microbial composition, while microbial metabolites influence metabolism, immunity, gut barrier integrity, and recovery. Despite rapid growth of research, findings are inconsistent, underscoring the need for clearer mechanisms. This review summarizes current evidence on the bidirectional relationship between training and the gut microbiota and its implications for performance.

 

Aim
To consolidate open-access research on links between gut microbiota, exercise physiology, and performance, focusing on metabolic pathways, gut–muscle communication, immune modulation, intestinal permeability, and training-specific effects.

 

Material and Methods
This narrative review draws on open-access literature up to 2025, identified through PubMed, PMC, and Google Scholar. Included studies comprise mechanistic animal work, observational data, randomized trials, and systematic reviews examining physical activity, microbiota composition, microbial metabolites, and performance in athletes.

 

Results
Endurance training induces microbial adaptations, including increases in taxa metabolizing lactate and generating propionate. Strength and HIIT training show more variable changes shaped by diet, training load, and metabolic health. Microbial metabolites—especially SCFAs—may enhance energy regulation, immune balance, and gut barrier function, though evidence remains fragmented and causality unclear.

 

Conclusion
The gut microbiota is a dynamic component of exercise adaptation. While diverse and SCFA-producing microbes appear beneficial for metabolism, inflammation control, and recovery, overall findings are heterogeneous. More interdisciplinary research is needed to clarify causal pathways and support personalized, microbiome-based strategies in sports nutrition and training.

References

1. Jardon KM, Canfora EE, Goossens GH, Blaak EE. Dietary macronutrients and the gut microbiome: a precision nutrition approach to improve cardiometabolic health. Gut. 2022 Jun;71(6):1214-1226. doi: 10.1136/gutjnl-2020-323715

2. Chen Y, Zhou J, Wang L. Role and Mechanism of Gut Microbiota in Human Disease. Front Cell Infect Microbiol. 2021 Mar 17;11:625913. doi: 10.3389/fcimb.2021.625913

3. Humińska-Lisowska K, Łabaj PP, Zielińska K. Unique Athletic Gut Microbiomes and Their Role in Sports Performance: A Narrative Review. J Hum Kinet. 2025 Oct 1;99:79-97. doi: 10.5114/jhk/202642

4. Núria Mach, Dolors Fuster-Botella. Endurance exercise and gut microbiota: A review, Journal of Sport and Health Science, Volume 6, Issue 2, 2017, Pages 179-197, ISSN 2095-2546, https://doi.org/10.1016/j.jshs.2016.05.001

5. Lin Z, Jiang T, Chen M, Ji X, Wang Y. Gut microbiota and sleep: Interaction mechanisms and therapeutic prospects. Open Life Sci. 2024 Jul 18;19(1):20220910. doi: 10.1515/biol-2022-0910

6. Weersma RK, Zhernakova A, Fu J. Interaction between drugs and the gut microbiome. Gut. 2020 Aug;69(8):1510-1519. doi: 10.1136/gutjnl-2019-320204

7. Nieman DC, Wentz LM. The compelling link between physical activity and the body's defense system. J Sport Health Sci. 2019 May;8(3):201-217. doi: 10.1016/j.jshs.2018.09.009

8. Scheiman J, Luber JM, Chavkin TA, MacDonald T, Tung A, Pham LD, Wibowo MC, Wurth RC, Punthambaker S, Tierney BT, Yang Z, Hattab MW, Avila-Pacheco J, Clish CB, Lessard S, Church GM, Kostic AD. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med. 2019 Jul;25(7):1104-1109. doi: 10.1038/s41591-019-0485-4

9. Jang LG, Choi G, Kim SW, Kim BY, Lee S, Park H. The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: an observational study. J Int Soc Sports Nutr. 2019 May 3;16(1):21. doi: 10.1186/s12970-019-0290-y

10. Petersen LM, Bautista EJ, Nguyen H, Hanson BM, Chen L, Lek SH, Sodergren E, Weinstock GM. Community characteristics of the gut microbiomes of competitive cyclists. Microbiome. 2017 Aug 10;5(1):98. doi: 10.1186/s40168-017-0320-4

11. Procházková N, Falony G, Dragsted LO, Licht TR, Raes J, Roager HM. Advancing human gut microbiota research by considering gut transit time. Gut. 2023 Jan;72(1):180-191. doi: 10.1136/gutjnl-2022-328166

12. Marttinen M, Ala-Jaakkola R, Laitila A, Lehtinen MJ. Gut Microbiota, Probiotics and Physical Performance in Athletes and Physically Active Individuals. Nutrients. 2020 Sep 25;12(10):2936. doi: 10.3390/nu12102936

13. Martin-Gallausiaux C, Marinelli L, Blottière HM, Larraufie P, Lapaque N. SCFA: mechanisms and functional importance in the gut. Proceedings of the Nutrition Society. 2021;80(1):37-49. doi:10.1017/S0029665120006916

14. Hays KE, Pfaffinger JM, Ryznar R. The interplay between gut microbiota, short-chain fatty acids, and implications for host health and disease. Gut Microbes. 2024 Jan-Dec;16(1):2393270. Doi: 10.1080/19490976.2024.2393270

15. Varghese S, Rao S, Khattak A, Zamir F, Chaari A. Physical Exercise and the Gut Microbiome: A Bidirectional Relationship Influencing Health and Performance. Nutrients. 2024 Oct 28;16(21):3663. doi: 10.3390/nu16213663

16. Van Hul M, Cani PD, Petitfils C, De Vos WM, Tilg H, El-Omar EM. What defines a healthy gut microbiome? Gut. 2024 Oct 7;73(11):1893-1908. doi: 10.1136/gutjnl-2024-333378

17. Collins SL, Stine JG, Bisanz JE, Okafor CD, Patterson AD. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat Rev Microbiol. 2023 Apr;21(4):236-247. doi: 10.1038/s41579-022-00805-x

18. Shi L, Jin L, Huang W. Bile Acids, Intestinal Barrier Dysfunction, and Related Diseases. Cells. 2023 Jul 19;12(14):1888. doi: 10.3390/cells12141888

19. Usuda H, Okamoto T, Wada K. Leaky Gut: Effect of Dietary Fiber and Fats on Microbiome and Intestinal Barrier. Int J Mol Sci. 2021 Jul 16;22(14):7613. doi: 10.3390/ijms22147613

20. Álvarez-Herms J, González A, Corbi F, Odriozola I, Odriozola A. Possible relationship between the gut leaky syndrome and musculoskeletal injuries: the important role of gut microbiota as indirect modulator. AIMS Public Health. 2023 Aug 22;10(3):710-738. doi: 10.3934/publichealth.2023049

21. Butler TD, Gibbs JE. Circadian Host-Microbiome Interactions in Immunity. Front Immunol. 2020 Aug 14;11:1783. doi: 10.3389/fimmu.2020.01783

22. Voigt RM, Forsyth CB, Green SJ, Mutlu E, Engen P, Vitaterna MH, Turek FW, Keshavarzian A. Circadian disorganization alters intestinal microbiota. PLoS One. 2014 May 21;9(5):e97500. doi: 10.1371/journal.pone.0097500

23. Zhao E, Tait C, Minacapelli CD, Catalano C, Rustgi VK. Circadian Rhythms, the Gut Microbiome, and Metabolic Disorders. Gastro Hep Adv. 2022 Feb 3;1(1):93-105. doi: 10.1016/j.gastha.2021.10.008

24. Zeng Q, Feng X, Hu Y, Su S. The human gut microbiota is associated with host lifestyle: a comprehensive narrative review. Front Microbiol. 2025 Jun 23;16:1549160. doi: 10.3389/fmicb.2025.1549160

25. Franzago M, Alessandrelli E, Notarangelo S, Stuppia L, Vitacolonna E. Chrono-Nutrition: Circadian Rhythm and Personalized Nutrition. Int J Mol Sci. 2023 Jan 29;24(3):2571. doi: 10.3390/ijms24032571

26. Wen C, Wang Q, Gu S, Jin J, Yang N. Emerging perspectives in the gut-muscle axis: The gut microbiota and its metabolites as important modulators of meat quality. Microb Biotechnol. 2024 Jan;17(1):e14361. Doi: 10.1111/1751-7915.14361

27. Li T, Yin D, Shi R. Gut-muscle axis mechanism of exercise prevention of sarcopenia. Front Nutr. 2024 Aug 16;11:1418778. doi: 10.3389/fnut.2024.1418778

28. Mancin L, Wu GD, Paoli A. Gut microbiota-bile acid-skeletal muscle axis. Trends Microbiol. 2023 Mar;31(3):254-269. doi: 10.1016/j.tim.2022.10.003. Epub 2022 Oct 29. Erratum in: Trends Microbiol. 2023 Mar;31(3):322. doi: 10.1016/j.tim.2023.01.003

29. De Vadder F, Kovatcheva-Datchary P, Zitoun C, Duchampt A, Bäckhed F, Mithieux G. Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis. Cell Metab. 2016 Jul 12;24(1):151-7. doi: 10.1016/j.cmet.2016.06.013

30. Romaní-Pérez M, López-Almela I, Bullich-Vilarrubias C, Rueda-Ruzafa L, Gómez Del Pulgar EM, Benítez-Páez A, Liebisch G, Lamas JA, Sanz Y. Holdemanella biformis improves glucose tolerance and regulates GLP-1 signaling in obese mice. FASEB J. 2021 Jul;35(7):e21734. doi: 10.1096/fj.202100126R

31. Larraufie, P., Martin-Gallausiaux, C., Lapaque, N. et al. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci Rep 8, 74 (2018). https://doi.org/10.1038/s41598-017-18259-0

32. Trovão F, Correia VG, Lourenço FM, Ribeiro DO, Carvalho AL, Palma AS, Pinheiro BA. The structure of a Bacteroides thetaiotaomicron carbohydrate-binding module provides new insight into the recognition of complex pectic polysaccharides by the human microbiome. J Struct Biol X. 2023 Jan 2;7:100084. doi: 10.1016/j.yjsbx.2022.100084

33. Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SE, MacDougall K, Preston T, Tedford C, Finlayson GS, Blundell JE, Bell JD, Thomas EL, Mt-Isa S, Ashby D, Gibson GR, Kolida S, Dhillo WS, Bloom SR, Morley W, Clegg S, Frost G. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015 Nov;64(11):1744-54. doi: 10.1136/gutjnl-2014-307913

34. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016 May 3;7(3):189-200. doi: 10.1080/19490976.2015.1134082

35. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, Takahashi T, Miyauchi S, Shioi G, Inoue H, Tsujimoto G. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829. doi: 10.1038/ncomms2852

36. Gross K, Santiago M, Krieger JM, Hagele AM, Zielinska K, Scheiman J, Jäger R, Kostic A, Kerksick CM. Impact of probiotic Veillonella atypica FB0054 supplementation on anaerobic capacity and lactate. iScience. 2023 Dec 8;27(1):108643. doi: 10.1016/j.isci.2023.108643

37. Simpson RJ, Campbell JP, Gleeson M, Krüger K, Nieman DC, Pyne DB, Turner JE, Walsh NP. Can exercise affect immune function to increase susceptibility to infection? Exerc Immunol Rev. 2020;26:8-22.

38. Peake JM, Della Gatta P, Suzuki K, Nieman DC. Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects. Exerc Immunol Rev. 2015;21:8-25.

39. Jäger R, Mohr AE, Carpenter KC, Kerksick CM, Purpura M, Moussa A, Townsend JR, Lamprecht M, West NP, Black K, Gleeson M, Pyne DB, Wells SD, Arent SM, Smith-Ryan AE, Kreider RB, Campbell BI, Bannock L, Scheiman J, Wissent CJ, Pane M, Kalman DS, Pugh JN, Ter Haar JA, Antonio J. International Society of Sports Nutrition Position Stand: Probiotics. J Int Soc Sports Nutr. 2019 Dec 21;16(1):62. doi: 10.1186/s12970-019-0329-0

40. Rawson ES, Miles MP, Larson-Meyer DE. Dietary Supplements for Health, Adaptation, and Recovery in Athletes. Int J Sport Nutr Exerc Metab. 2018 Mar 1;28(2):188-199. doi: 10.1123/ijsnem.2017-0340

41. Komano Y, Shimada K, Naito H, Fukao K, Ishihara Y, Fujii T, Kokubo T, Daida H. Efficacy of heat-killed Lactococcus lactis JCM 5805 on immunity and fatigue during consecutive high intensity exercise in male athletes: a randomized, placebo-controlled, double-blinded trial. J Int Soc Sports Nutr. 2018 Aug 2;15(1):39. doi: 10.1186/s12970-018-0244-9

42. Strasser B, Geiger D, Schauer M, Gostner JM, Gatterer H, Burtscher M, Fuchs D. Probiotic Supplements Beneficially Affect Tryptophan-Kynurenine Metabolism and Reduce the Incidence of Upper Respiratory Tract Infections in Trained Athletes: A Randomized, Double-Blinded, Placebo-Controlled Trial. Nutrients. 2016 Nov 23;8(11):752. doi: 10.3390/nu8110752

43. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015 Aug 7;21(29):8787-803. doi: 10.3748/wjg.v21.i29.8787

44. Clark A, Mach N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. J Int Soc Sports Nutr. 2016 Nov 24;13:43. doi: 10.1186/s12970-016-0155-6

45. Gleeson M. Immune function in sport and exercise. J Appl Physiol (1985). 2007 Aug;103(2):693-9. doi: 10.1152/japplphysiol.00008.2007

46. Lamprecht M, Bogner S, Schippinger G, Steinbauer K, Fankhauser F, Hallstroem S, Schuetz B, Greilberger JF. Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial. J Int Soc Sports Nutr. 2012 Sep 20;9(1):45. doi: 10.1186/1550-2783-9-45

47. Huang WC, Wei CC, Huang CC, Chen WL, Huang HY. The Beneficial Effects of Lactobacillus plantarum PS128 on High-Intensity, Exercise-Induced Oxidative Stress, Inflammation, and Performance in Triathletes. Nutrients. 2019 Feb 7;11(2):353. doi: 10.3390/nu11020353

48. Segain JP, Raingeard de la Blétière D, Bourreille A, Leray V, Gervois N, Rosales C, Ferrier L, Bonnet C, Blottière HM, Galmiche JP. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn's disease. Gut. 2000 Sep;47(3):397-403. doi: 10.1136/gut.47.3.397

49. Corrêa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MA. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunology. 2016 Apr 22;5(4):e73. doi: 10.1038/cti.2016.17

50. Clauss M, Gérard P, Mosca A, Leclerc M. Interplay Between Exercise and Gut Microbiome in the Context of Human Health and Performance. Front Nutr. 2021 Jun 10;8:637010. doi: 10.3389/fnut.2021.637010

51. van Wijck K, Lenaerts K, Grootjans J, Wijnands KA, Poeze M, van Loon LJ, Dejong CH, Buurman WA. Physiology and pathophysiology of splanchnic hypoperfusion and intestinal injury during exercise: strategies for evaluation and prevention. Am J Physiol Gastrointest Liver Physiol. 2012 Jul 15;303(2):G155-68. doi: 10.1152/ajpgi.00066.2012

52. Di Vincenzo F, Del Gaudio A, Petito V, Lopetuso LR, Scaldaferri F. Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review. Intern Emerg Med. 2024 Mar;19(2):275-293. doi: 10.1007/s11739-023-03374-w

53. Yang J, Huang Q, Long J, Li J. Microbiota and inflammatory bowel disease: the dual effect mechanism of polysaccharide therapy. Front Immunol. 2025 Oct 31;16:1666866. doi: 10.3389/fimmu.2025.1666866

54. Zhao X, Zhang Z, Hu B, Huang W, Yuan C, Zou L. Response of Gut Microbiota to Metabolite Changes Induced by Endurance Exercise. Front Microbiol. 2018 Apr 20;9:765. doi: 10.3389/fmicb.2018.00765

55. Ampe T, Decroix L, De Pauw K, Meeusen R, Demuyser T, Roelands B. Nutritional and Physiological Demands Shape the Gut Microbiome of Female World Tour Cyclists. Microorganisms. 2025 Oct 13;13(10):2345. doi: 10.3390/microorganisms13102345

56. Shalmon G, Ibrahim R, Israel-Elgali I, Grad M, Shlayem R, Shapira G, Shomron N, Youngster I, Scheinowitz M. Differential Gut Microbiome Profiles in Long-Distance Endurance Cyclists and Runners. Life (Basel). 2024 Dec 23;14(12):1703. doi: 10.3390/life14121703

57. Uchida M, Fujie S, Yano H, Iemitsu M. Aerobic exercise training-induced alteration of gut microbiota composition affects endurance capacity. J Physiol. 2023 Jun;601(12):2329-2344. doi: 10.1113/JP283995

58. Grosicki GJ, Durk RP, Bagley JR. Rapid gut microbiome changes in a world-class ultramarathon runner. Physiol Rep. 2019 Dec;7(24):e14313. doi: 10.14814/phy2.14313

59. Moore JH, Smith KS, Chen D, Lamb DA, Smith MA, Osburn SC, Ruple BA, Morrow CD, Huggins KW, McDonald JR, Brown MD, Young KC, Roberts MD, Frugé AD. Exploring the Effects of Six Weeks of Resistance Training on the Fecal Microbiome of Older Adult Males: Secondary Analysis of a Peanut Protein Supplemented Randomized Controlled Trial. Sports (Basel). 2022 Apr 22;10(5):65. doi: 10.3390/sports10050065

60. Bycura D, Santos AC, Shiffer A, Kyman S, Winfree K, Sutliffe J, Pearson T, Sonderegger D, Cope E, Caporaso JG. Impact of Different Exercise Modalities on the Human Gut Microbiome. Sports (Basel). 2021 Jan 21;9(2):14. doi: 10.3390/sports9020014

61. Wagner A, Kapounková K, Struhár I. The relationship between the gut microbiome and resistance training: a rapid review. BMC Sports Sci Med Rehabil. 2024 Jan 2;16(1):4. doi: 10.1186/s13102-023-00791-4

62. Prokopidis K, Giannos P, Kirwan R, Ispoglou T, Galli F, Witard OC, Triantafyllidis KK, Kechagias KS, Morwani-Mangnani J, Ticinesi A, Isanejad M. Impact of probiotics on muscle mass, muscle strength and lean mass: a systematic review and meta-analysis of randomized controlled trials. J Cachexia Sarcopenia Muscle. 2023 Feb;14(1):30-44. doi: 10.1002/jcsm.13132

63. Wang Y, Bai S, Yang T, Guo J, Zhu X, Dong Y. Impact of exercise-induced alterations on gut microbiota diversity and composition: comparing effects of different training modalities. Cell Regen. 2025 Jul 2;14(1):28. doi: 10.1186/s13619-025-00244-y

64. Nechalová L, Bielik V, Hric I, Babicová M, Baranovičová E, Grendár M, Koška J, Penesová A. Gut microbiota and metabolic responses to a 12-week caloric restriction combined with strength and HIIT training in patients with obesity: a randomized trial. BMC Sports Sci Med Rehabil. 2024 Dec 5;16(1):239. doi: 10.1186/s13102-024-01029-7

65. Batitucci G, Almeida OG, De Martinis ECP, Solar I, Cintra DE, de Freitas EC. Intermittent fasting and high-intensity interval training do not alter gut microbiota composition in adult women with obesity. Am J Physiol Endocrinol Metab. 2024 Sep 1;327(3):E241-E257. doi: 10.1152/ajpendo.00310.2023

66. Maillard F, Vazeille E, Sauvanet P, Sirvent P, Combaret L, Sourdrille A, Chavanelle V, Bonnet R, Otero YF, Delcros G, Barnich N, Boisseau N. High intensity interval training promotes total and visceral fat mass loss in obese Zucker rats without modulating gut microbiota. PLoS One. 2019 Apr 9;14(4):e0214660. doi: 10.1371/journal.pone.0214660

67. Rettedal EA, Cree JME, Adams SE, MacRae C, Skidmore PML, Cameron-Smith D, Gant N, Blenkiron C, Merry TL. Short-term high-intensity interval training exercise does not affect gut bacterial community diversity or composition of lean and overweight men. Exp Physiol. 2020 Aug;105(8):1268-1279. doi: 10.1113/EP088744

68. Couvert A, Goumy L, Maillard F, Esbrat A, Lanchais K, Saugrain C, Verdier C, Doré E, Chevarin C, Adjtoutah D, Morel C, Pereira B, Martin V, Lancha AH Jr, Barnich N, Chassaing B, Rance M, Boisseau N. Effects of a Cycling versus Running HIIT Program on Fat Mass Loss and Gut Microbiota Composition in Men with Overweight/Obesity. Med Sci Sports Exerc. 2024 May 1;56(5):839-850. doi: 10.1249/MSS.0000000000003376

69. Clarke SF, Murphy EF, O'Sullivan O, Lucey AJ, Humphreys M, Hogan A, Hayes P, O'Reilly M, Jeffery IB, Wood-Martin R, Kerins DM, Quigley E, Ross RP, O'Toole PW, Molloy MG, Falvey E, Shanahan F, Cotter PD. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014 Dec;63(12):1913-20. doi: 10.1136/gutjnl-2013-306541

70. Petri C, Mascherini G, Izzicupo P, Rosati D, Cerboneschi M, Smeazzetto S, Arrones LS. Gut microbiota and physical activity level: characterization from sedentary to soccer players. Biol Sport. 2024 Jul;41(3):169-176. doi: 10.5114/biolsport.2024.134759

71. Hintikka JE, Munukka E, Valtonen M, Luoto R, Ihalainen JK, Kallonen T, Waris M, Heinonen OJ, Ruuskanen O, Pekkala S. Gut Microbiota and Serum Metabolome in Elite Cross-Country Skiers: A Controlled Study. Metabolites. 2022 Apr 7;12(4):335. doi: 10.3390/metabo12040335

72. Li Y, Cheng M, Zha Y, Yang K, Tong Y, Wang S, Lu Q, Ning K. Gut microbiota and inflammation patterns for specialized athletes: a multi-cohort study across different types of sports. mSystems. 2023 Aug 31;8(4):e0025923. doi: 10.1128/msystems.00259-23

73. Akazawa N, Nakamura M, Eda N, Murakami H, Nakagata T, Nanri H, Park J, Hosomi K, Mizuguchi K, Kunisawa J, Miyachi M, Hoshikawa M. Gut microbiota alternation with training periodization and physical fitness in Japanese elite athletes. Front Sports Act Living. 2023 Jul 14;5:1219345. doi: 10.3389/fspor.2023.1219345

74. Carlone J, Giampaoli S, Alladio E, Rosellini G, Barni F, Salata E, Parisi A, Fasano A, Tessitore A. Dynamic stability of gut microbiota in elite volleyball athletes: microbial adaptations during training, competition and recovery. Front Sports Act Living. 2025 Sep 3;7:1662964. doi: 10.3389/fspor.2025.1662964

75. Oniszczuk A, Oniszczuk T, Gancarz M, Szymańska J. Role of Gut Microbiota, Probiotics and Prebiotics in the Cardiovascular Diseases. Molecules. 2021 Feb 22;26(4):1172. doi: 10.3390/molecules26041172

76. Wieërs G, Belkhir L, Enaud R, Leclercq S, Philippart de Foy JM, Dequenne I, de Timary P, Cani PD. How Probiotics Affect the Microbiota. Front Cell Infect Microbiol. 2020 Jan 15;9:454. doi: 10.3389/fcimb.2019.00454

77. Lin CL, Hsu YJ, Ho HH, Chang YC, Kuo YW, Yeh YT, Tsai SY, Chen CW, Chen JF, Huang CC, Lee MC. Bifidobacterium longum subsp. longum OLP-01 Supplementation during Endurance Running Training Improves Exercise Performance in Middle- and Long-Distance Runners: A Double-Blind Controlled Trial. Nutrients. 2020 Jul 2;12(7):1972. doi: 10.3390/nu12071972

78. Huang WC, Pan CH, Wei CC, Huang HY. Lactobacillus plantarum PS128 Improves Physiological Adaptation and Performance in Triathletes through Gut Microbiota Modulation. Nutrients. 2020 Aug 1;12(8):2315. doi: 10.3390/nu12082315

79. Jäger R, Shields KA, Lowery RP, De Souza EO, Partl JM, Hollmer C, Purpura M, Wilson JM. Probiotic Bacillus coagulans GBI-30, 6086 reduces exercise-induced muscle damage and increases recovery. PeerJ. 2016 Jul 21;4:e2276. doi: 10.7717/peerj.2276

80. Soares ADN, Wanner SP, Morais ESS, Hudson ASR, Martins FS, Cardoso VN. Supplementation with Saccharomyces boulardii Increases the Maximal Oxygen Consumption and Maximal Aerobic Speed Attained by Rats Subjected to an Incremental-Speed Exercise. Nutrients. 2019 Oct 2;11(10):2352. doi: 10.3390/nu11102352

81. Zhang L, Xiao H, Zhao L, Liu Z, Chen L, Liu C. Comparison of the Effects of Prebiotics and Synbiotics Supplementation on the Immune Function of Male University Football Players. Nutrients. 2023 Feb 25;15(5):1158. doi: 10.3390/nu15051158.

82. Li HY, Zhou DD, Gan RY, Huang SY, Zhao CN, Shang A, Xu XY, Li HB. Effects and Mechanisms of Probiotics, Prebiotics, Synbiotics, and Postbiotics on Metabolic Diseases Targeting Gut Microbiota: A Narrative Review. Nutrients. 2021 Sep 15;13(9):3211. doi: 10.3390/nu13093211

83. Markowiak P, Śliżewska K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients. 2017 Sep 15;9(9):1021. doi: 10.3390/nu9091021

84. Al-Habsi N, Al-Khalili M, Haque SA, Elias M, Olqi NA, Al Uraimi T. Health Benefits of Prebiotics, Probiotics, Synbiotics, and Postbiotics. Nutrients. 2024 Nov 19;16(22):3955. doi: 10.3390/nu16223955

85. Naseri K, Saadati S, Ghaemi F, Ashtary-Larky D, Asbaghi O, Sadeghi A, Afrisham R, de Courten B. The effects of probiotic and synbiotic supplementation on inflammation, oxidative stress, and circulating adiponectin and leptin concentration in subjects with prediabetes and type 2 diabetes mellitus: a GRADE-assessed systematic review, meta-analysis, and meta-regression of randomized clinical trials. Eur J Nutr. 2023 Mar;62(2):543-561. doi: 10.1007/s00394-022-03012-9

86. Imanian B, Hemmatinafar M, Maymandinejad I, Binazade MR, Jäger R, Jahan Z, Naseri K, Rezaei R, Suzuki K. Synbiotic Supplementation with Probiotics and Omega-3 Fatty Acids Enhances Upper-Body Muscle Strength in Elite Swimmers: Evidence for Gut-Muscle Axis Modulation During Race-Pace Training. Nutrients. 2025 Sep 15;17(18):2959. doi: 10.3390/nu17182959

87. Nay K, Jollet M, Goustard B, Baati N, Vernus B, Pontones M, Lefeuvre-Orfila L, Bendavid C, Rué O, Mariadassou M, Bonnieu A, Ollendorff V, Lepage P, Derbré F, Koechlin-Ramonatxo C. Gut bacteria are critical for optimal muscle function: a potential link with glucose homeostasis. Am J Physiol Endocrinol Metab. 2019 Jul 1;317(1):E158-E171. doi: 10.1152/ajpendo.00521.2018

88. Chen Y, Yang K, Xu M, Zhang Y, Weng X, Luo J, Li Y, Mao YH. Dietary Patterns, Gut Microbiota and Sports Performance in Athletes: A Narrative Review. Nutrients. 2024 May 26;16(11):1634. doi: 10.3390/nu16111634

89. Riley L Hughes, Hannah D Holscher. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes, Advances in Nutrition, Volume 12, Issue 6, 2021, Pages 2190-2215, ISSN 2161-8313, https://doi.org/10.1093/advances/nmab077.

90. Zhang L, Li H, Song Z, Liu Y, Zhang X. Dietary Strategies to Improve Exercise Performance by Modulating the Gut Microbiota. Foods. 2024; 13(11):1680. https://doi.org/10.3390/foods13111680

91. Okamoto T, Morino K, Ugi S, Nakagawa F, Lemecha M, Ida S, Ohashi N, Sato D, Fujita Y, Maegawa H. Microbiome potentiates endurance exercise through intestinal acetate production. Am J Physiol Endocrinol Metab. 2019 May 1;316(5):E956-E966. doi: 10.1152/ajpendo.00510.2018

92. Alex E Mohr, Núria Mach, Jamie Pugh, Gregory J Grosicki, Jacob M Allen, J Philip Karl, Corrie M Whisner, Mechanisms underlying alterations of the gut microbiota by exercise and their role in shaping ecological resilience, FEMS Microbiology Reviews, Volume 49, 2025, fuaf037, https://doi.org/10.1093/femsre/fuaf037

93. Son J, Jang LG, Kim BY, Lee S, Park H. The Effect of Athletes' Probiotic Intake May Depend on Protein and Dietary Fiber Intake. Nutrients. 2020 Sep 25;12(10):2947. doi: 10.3390/nu12102947

Quality in Sport

Downloads

  • PDF

Published

2025-12-28

How to Cite

1.
OLSZÓWKA, Magdalena, TOCZEK, Wiktoria Oliwia, BOGDAN , Klaudia, JANKOWSKI , Mikołaj, JANICKA, Urszula, CIEPLUCH, Natalia and SŁOMIŃSKI, Szymon Stanisław. The Gut Microbiome in Athletes: Mechanisms, Training Adaptations, and Implications for Performance — A Comprehensive Review. Quality in Sport. Online. 28 December 2025. Vol. 48, p. 67288. [Accessed 28 December 2025]. DOI 10.12775/QS.2025.48.67288.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 48 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Magdalena Olszówka, Wiktoria Oliwia Toczek, Klaudia Bogdan , Mikołaj Jankowski , Urszula Janicka, Natalia Ciepluch, Szymon Stanisław Słomiński

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 3
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

gut microbiome, athletic performance, exercise physiology, short chain-fatty acids (SCFAs), gut-muscle-axis, intestinal barrier, endurance training, HIIT, strength training, microbial diversity, sports nutrition
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop