Regular monitoring of post-training biochemical markers as a tool for injury prevention in professional athletics – review
DOI:
https://doi.org/10.12775/QS.2025.39.58897Keywords
Creatine Kinase (CK), C-Reactive Protein (CRP), Electrolytes (potassium, sodium, magnesium, calcium, phosphorus), Hormones (testosterone, cortisol), Fatigue Markers, Muscle Damage, Injury PreventionAbstract
Modern professional sports place increasingly high demands on athletes, necessitating the optimization of training loads and effective injury prevention. One of the key tools supporting these processes is the regular monitoring of biochemical markers, which allows for the assessment of the body's response to physical exertion and the detection of overtraining states. This paper discusses the significance of selected biochemical indicators, including creatine kinase (CK), lactate dehydrogenase (LDH), acute-phase proteins (CRP, IL-6, IL-8, IL-10, haptoglobin), metallothionein (MT), electrolytes, and hormones (testosterone and cortisol), in the context of monitoring fatigue, recovery, and injury risk.
Analysis of available studies has shown that the integration of various biomarkers enables a more precise assessment of the body's adaptation to training loads and the early detection of overtraining symptoms. At the same time, attention has been drawn to individual physiological differences affecting the interpretation of results, as well as the need for further research into the standardization of measurement methods.
Regular monitoring of biochemical markers can serve as an effective tool for optimizing the training process, provided it is integrated with an individualized approach to the athlete and considers a broad spectrum of factors influencing the body's response. The implementation of such an approach can contribute to minimizing injury risk, improving performance, and enhancing recovery efficiency, which is crucial for the long-term professional development of athletes.
References
1. Bestwick-Stevenson T, Toone R, Neupert E, Edwards K, Kluzek S. Assessment of fatigue and recovery in sport: Narrative review. Int J Sports Med. 2022;43(11):1151–1162. doi:10.1055/a-1834-7177.
2. Borucka-Konopka AM. Efekt placebo u mężczyzn aktywnych fizycznie w aspekcie badań fizjologicznych i biochemicznych [rozprawa doktorska]. Poznań: Akademia Wychowania Fizycznego im. Eugeniusza Piaseckiego w Poznaniu; 2020.
3. Byrne C, Twist C, Eston R. Neuromuscular function after exercise-induced muscle damage: theoretical and applied implications. Sports Med. 2004;34(1):49–69. PMID:14715039.
4. Callegari GA, Novaes JS, Neto GR, Dias I, Garrido ND, Dani C. Creatine kinase and lactate dehydrogenase responses after different resistance and aerobic exercise protocols. J Hum Kinet. 2017;58:65–72. doi:10.1515/hukin-2017-0071.
5. Cofré-Bolados C, Reuquen-López P, Herrera-Valenzuela T, Orihuela-Diaz P, Garcia-Hermoso A, Hackney AC.Testosterone and cortisol responses to HIIT and continuous aerobic exercise in active young men. Sustainability.2019;11(21):6069. doi:10.3390/su11216069.
6. Córdova A, Mielgo-Ayuso J, Bonilla L. Serum magnesium behavior in professional cyclists after a multi-stage competition. Eur J Sports Exerc Sci. 2015;4(3):8–14.
7. de la Rubia Ortí JE, Platero JL, Benlloch M, Franco-Martinez L, Tvarijonaviciute A, Escribá-Alepuz J, Sancho-Castillo S. Role of haptoglobin as a marker of muscular improvement in patients with multiple sclerosis after administration of epigallocatechin gallate and increase of beta-hydroxybutyrate in the blood: A pilot study. Biomolecules.2021;11(5):617. doi:10.3390/biom11050617.
8. Dote-Montero M, Carneiro-Barrera A, Martinez-Vizcaino V, Ruiz JR, Amaro-Gahete FJ. Acute effect of HIIT on testosterone and cortisol levels in healthy individuals: a systematic review and meta-analysis. Scand J Med Sci Sports.2021;31:1722-1744. doi:10.1111/sms.13999.
9. Gagnon DD, Dorman S, Ritchie S, Mutt SJ, Stenbäck V, Walkowiak J, Herzig K-H. Multi-day prolonged low- to moderate-intensity endurance exercise mimics training improvements in metabolic and oxidative profiles without concurrent chromosomal changes in healthy adults. Front Physiol. 2019;10:1123. doi:10.3389/fphys.2019.01123.
10. Gast LV, Baier L-M, Meixner CR, Chaudry O, Engelke K, Uder M, Nagel AM, Heiss R. MRI of potassium and sodium enables comprehensive analysis of ion perturbations in skeletal muscle tissue after eccentric exercise. Invest Radiol. 2023;58(4):265–272. doi:10.1097/RLI.0000000000000931.
11. Gejl KD, Andersson EP, Nielsen J, Holmberg H-C, Ørtenblad N. Effects of acute exercise and training on the sarcoplasmic reticulum Ca2+ release and uptake rates in highly trained endurance athletes. Front Physiol. 2020;11:810. doi:10.3389/fphys.2020.00810.
12. Hacker S, Keck J, Reichel T, Eder K, Ringseis R, Krüger K, Krüger B. Biomarkers in endurance exercise: Individualized regulation and predictive value. Transl Sports Med. 2023;Article ID 6614990. doi:10.1155/2023/6614990.
13. Haller N, Behringer M, Reichel T, Wahl P, Simon P, Krüger K, et al. Blood-based biomarkers for managing workload in athletes: Considerations and recommendations for evidence-based use of established biomarkers. Sports Med.2023;53(10):1315–1333. doi:10.1007/s40279-023-01836-x.
14. Haller N, Reichel T, Zimmer P, Behringer M, Wahl P, Stöggl T, Krüger K, Simon P. Blood-based biomarkers for managing workload in athletes: perspectives for research on emerging biomarkers. Sports Med. 2023;53:2039–2053. doi:10.1007/s40279-023-01866-5.
15. Luebbers PE, Kriley LM, Eserhaut DA, Andre MJ, Butler MS, Fry AC. Salivary testosterone and cortisol responses to seven weeks of practical blood flow restriction training in collegiate American football players. Front Physiol. 2025;15:1507445. doi:10.3389/fphys.2024.1507445.
16. Małkowska P, Sawczuk M. Cytokines as biomarkers for evaluating physical exercise in trained and non-trained individuals: A narrative review. Int J Mol Sci. 2023;24(13):11156. doi:10.3390/ijms241311156.
17. Meyer T, Meister S. Routine blood parameters in elite soccer players. Int J Sports Med. 2011;32(11):875–81. doi:10.1055/s-0031-1280776. PMID:22020850.
18. Michnik A, Sadowska-Krępa E, Domaszewski P, Duch K, Pokora I. Blood serum DSC analysis of well-trained men response to CrossFit training and green tea extract supplementation. J Therm Anal Calorim. 2017;130(3):1253–62. doi:10.1007/s10973-017-6346-9.
19. Nash D. The IL-6 signalling pathway: potential biomarkers for training load, performance, and health status in endurance runners? [Doctoral thesis]. Cardiff Metropolitan University; 2023.
20. Nielsen FH, Lukaski HC. Update on the relationship between magnesium and exercise. Magnes Res. 2006;19(3):180–189.
21. Nieman DC, Zwetsloot KA, Simonson AJ, Hoyle AT, Wang X, Nelson HK, Lefranc-Millot C, Guérin-Deremaux L.Effects of whey and pea protein supplementation on post-eccentric exercise muscle damage: A randomized trial. Nutrients. 2020;12(8):2382. doi:10.3390/nu12082382.
22. Płoszczyca K. Wpływ treningu interwałowego o wysokiej intensywności w warunkach hipoksji normobarycznej na poziom wybranych hormonów oraz profil lipidowy u pływaków [rozprawa doktorska]. Katowice: Akademia Wychowania Fizycznego im. Jerzego Kukuczki w Katowicach; 2020.
23. Salem A, Ben Maaoui K, Jahrami H, AlMarzooqi MA, Boukhris O, Messai B, et al. Attenuating muscle damage biomarkers and muscle soreness after an exercise-induced muscle damage with branched-chain amino acid (BCAA) supplementation: A systematic review and meta-analysis with meta-regression. Sports Med Open. 2024;10:42. doi:10.1186/s40798-024-00686-9.
24. Saw, A.E.; Main, L.C.; Gastin, P.B. Monitoring the Athlete Training Response: Subjective Self-Reported Measures Trump Commonly Used Objective Measures: A Systematic Review. Br. J. Sports Med. 2016;50, 281-291.
25. Sobiech KA. Przydatność markerów biochemicznych w ocenie monitoringu wysiłku fizycznego. Nowa Medycyna.2000;12:1–7.
26. Soler-López A, Moreno-Villanueva A, Gómez-Carmona CD, Pino-Ortega J. The role of biomarkers in monitoring chronic fatigue among male professional team athletes: A systematic review. Sensors. 2024;24:6862. doi:10.3390/s24216862.
27. Tsunekawa K, Shoho Y, Ushiki K, Yanagawa Y, Matsumoto R, Shimoda N, et al. Assessment of exercise-induced stress via automated measurement of salivary cortisol concentrations and the testosterone-to-cortisol ratio: a preliminary study. Sci Rep. 2023;13:14532. doi:10.1038/s41598-023-41620-5.
28. Ugwuja S, Obeagu EI, Ochei K. Effect of physical exercises on serum electrolyte. IOSR J Dent Med. Sci.2014;13(9):118–121. doi:10.9790/0853-1392118121.
29. Wiewelhove T, Raeder C, Meyer T, Kellmann M, Pfeiffer M, Ferrauti A. Markers for routine assessment of fatigue and recovery in male and female team sport athletes during high-intensity interval training. PLoS One.2015;10(10):e0139801. doi:10.1371/journal.pone.0139801.
30. Wochyński Z, Sobiech KA, Milnerowicz H, Nowak P. Can metallothionein be considered a diagnostic marker in physical exercise? Adv Clin Exp Med. 2003;12(5):641–645.
31. Wojtasik W, Szulc A, Kołodziejczyk M, Szulc A. Wpływ wysiłku fizycznego na homeostazę i środowisko wewnętrzne organizmu człowieka. J Educ Health Sport. 2015;5(9):754-767. doi:10.5281/zenodo.44340.
32. Yang R, Roshani D, Gao B, Li P, Shang N. Metallothionein: A comprehensive review of its classification, structure, biological functions, and applications. Antioxidants. 2024;13(7):825. doi:10.3390/antiox13070825.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sara Szydłowska, Krzysztof Błaszków, Jagoda Elias, Wiktor Biesiada, Marlena Zubiak, Dominika Kaźmierczak

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 8
Number of citations: 0