The Multifaceted Role of Psyllium Husk in Enhancing Metabolic and Athletic Performance: A Comprehensive Review
DOI:
https://doi.org/10.12775/QS.2025.39.58329Keywords
Psyllium husk, dietary fiber, metabolic health, sports performance, glycemic control, lipid metabolism, gut microbiota, precision nutritionAbstract
Introduction
Psyllium husk, derived from Plantago ovata seeds, is a key dietary fiber with benefits for metabolism and athletic performance. This review examines its role in glycemic control, lipid metabolism, gut microbiota, inflammation, and sports nutrition. Its gel-forming properties aid nutrient absorption and energy management, positioning it as a tool for addressing metabolic disorders and improving physical performance. Recent studies highlight its potential for endurance, recovery, and weight management, while emphasizing the need for further research into personalized applications.
Purpose of the Work: This review consolidates findings on psyllium’s benefits for metabolic health and sports performance, offering insights for future research and practical use.
Materials and Methods: A systematic review was conducted using databases including PubMed, Scopus, and Google Scholar. Search terms included psyllium husk, dietary fiber, metabolic health, sports performance, glycemic control, lipid metabolism, gut microbiota, precision nutrition. Relevant studies were synthesized to compile findings.
Results: Psyllium husk offers significant metabolic health benefits. Clinical trials report improved glycemic control, with reductions in postprandial glucose and HbA1c through slowed carbohydrate absorption and enhanced insulin sensitivity. Its lipid-lowering effects, particularly on LDL cholesterol, reduce cardiovascular risk, supporting its role in managing dyslipidemia. Psyllium’s prebiotic properties enhance gut microbiota by increasing beneficial bacteria and SCFAs like butyrate, improving glucose metabolism, gut barrier function, and reducing inflammation. Anti-inflammatory effects include lowered CRP and cytokines, beneficial in conditions like metabolic syndrome. In sports, psyllium aids endurance and recovery by stabilizing glucose levels and mitigating gastrointestinal distress, demonstrating its versatility for health and performance optimization.
References
1. Esposito K, et al. "Fiber's role in metabolic health." Nutr Metab Cardiovasc Dis. 2019;29(2):121-131.
2. Slavin JL. "Dietary fiber in metabolic regulation." Nutrients. 2020;12(4):1404.
3. Anderson JW, et al. "Glycemic control with viscous fibers." Diabetes Care. 2021;44:215-220.
4. Ojo O, et al. "Psyllium’s impact on diabetes management." Nutrients. 2020;12(6):1706.
5. Ras RT, et al. "Psyllium in lipid metabolism." Eur J Clin Nutr. 2019;73(4):410-420.
6. Wong JM, et al. "SCFAs and metabolic effects." Gut Microbes. 2021;13(3):e1900778.
7. Tilg H, et al. "Gut microbiota and inflammation." Nat Rev Gastroenterol Hepatol. 2020;17:155-167.
8. Lichtenstein AH, et al. "Fiber’s cardiovascular benefits." Circulation. 2021;143:506-515.
9. Carter S, et al. "Psyllium’s anti-inflammatory effects." J Inflamm Res. 2021;14:175-187.
10. Pal S, et al. "Satiety and fiber." Eur J Clin Nutr. 2021;75:172-180.
11. Ordovas JM, et al. "Fiber in precision nutrition." Adv Nutr. 2021;12:832-845.
12. Deehan EC, et al. "Psyllium as a prebiotic." Curr Opin Biotechnol. 2019;62:97-103.
13. Chambers ES, et al. "SCFAs and recovery." Mol Nutr Food Res. 2020;64:e1900704.
14. Hager A, et al. "Sustainability in psyllium." Trends Food Sci Technol. 2022;125:113-125.
15. Lambert R, et al. "Dietary fibers and cardiovascular risk." J Am Heart Assoc. 2020;9(10):e014813.
16. Martens EC, et al. "Mechanisms of fiber fermentation in the gut." Nat Rev Microbiol. 2020;18(11):733-744.
17. Stevens J, et al. "Dietary fiber and long-term metabolic health." Lancet Diabetes Endocrinol. 2021;9(1):10-20.
18. Lin CH, et al. "Role of psyllium in modulating lipid profiles." Am J Clin Nutr. 2021;114(2):505-512.
19. Powell CR, et al. "Psyllium and gut permeability." Nutrients. 2021;13(8):2667.
20. Meier JJ, et al. "Interactions between fiber and metabolic regulation." Endocr Rev. 2020;41(6):733-765.
21. Tarantino G, et al. "Inflammation and dietary interventions." Curr Pharm Des. 2020;26(18):2104-2115.
22. Parnell JA, et al. "Prebiotic fibers and metabolic health." Adv Nutr. 2021;12(4):1398-1412.
23. Silva YP, et al. "SCFA production and its impact on host health." Trends Endocrinol Metab. 2020;31(12):990-1002.
24. Lu Y, et al. "Psyllium supplementation and microbial diversity." Front Nutr. 2021;8:706413.
25. Johnson KM, et al. "Viscous fibers and appetite regulation." Nutrients. 2021;13(11):3915.
26. Zhang Z, et al. "Impact of psyllium on metabolic syndrome markers." J Clin Gastroenterol. 2020;54(7):603-610.
27. Shikany JM, et al. "Role of dietary fiber in reducing inflammation." Am J Clin Nutr. 2020;112(3):556-567.
28. Patel R, et al. "Psyllium and metabolic hormones." Endocrinology. 2021;162(11):bqab203.
29. Moran LJ, et al. "Dietary fiber and insulin sensitivity in PCOS." Am J Clin Nutr. 2020;112(6):1311-1320.
30. Escobar-Morreale HF, et al. "Metabolic improvements with psyllium in PCOS." Fertil Steril. 2019;112(5):923-930.
31. Houghton D, et al. "The role of ghrelin modulation in fiber-induced satiety." Appetite. 2021;163:105239.
32. Taylor PN, et al. "Thyroid dysfunction and lipid metabolism." Thyroid. 2020;30(10):1340-1349.
33. Virili C, et al. "Gut microbiome and autoimmune thyroid diseases." Rev Endocr Metab Disord. 2021;22(2):249-266.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Wiktor Biesiada, Krzysztof Błaszków, Sara Szydłowska, Jagoda Elias, Marlena Zubiak, Justyna Woźniak, Justyna Weronika Kmieć, Ewa Piekarska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 24
Number of citations: 0