Sarcopenia in IBD patients and the role of nutritional and physical activity interventions in its management – a systematic review
DOI:
https://doi.org/10.12775/QS.2025.38.58221Keywords
IBD, sarcopenia, Crohn's disease, colitis ulcerosa, inflammatory bowel diseaseAbstract
Inflammatory Bowel Diseases (IBD), namely Ulcerative Colitis and Crohn’s Disease, are chronic, relapsing, inflammatory conditions of the gastrointestinal tract, with multifactorial pathophysiology. They are often complicated by sarcopenia, which is defined as a condition of skeletal muscle system characterized by a generalized loss of skeletal muscle mass and muscle function. Sarcopenia and pre-sarcopenic conditions are important to be diagnosed and maintained in the course of IBD, as they exert detrimental impact on the therapy outcomes. There is increased probability of therapy failure such as change of pharmacotherapy, hospitalization or surgical intervention, in individuals with sarcopenia. There are multiple mechanisms underlying this complication in IBD: e.g. malnutrition, disrupted gut microbiota, pharmacotherapy, and elevated inflammatory cytokines. Nevertheless, there are some possible interventions that can be undertaken to counteract this complication. Fundamental interventions in IBD-related sarcopenia are: accurate nutrition, micronutrient supplementation and properly adjusted physical activity. IBD patients should do 3-5 moderate-intensity trainings per week. Exercise programs should combine aerobic, resistance and flexibility exercises. Resistance training is the first-line therapy in management of sarcopenia. This kind of exercises was proven to improve muscle mass, strength and physical performance. Aerobic activity is also important as it enhances metabolic capacity of the muscles.
However, further research is required to define specific recommendations for nutritional and exercise interventions validated for the group of patients with IBD-related sarcopenia.
References
1. Mendes J, Simões CD, Martins JO, Sousa AS. INFLAMMATORY BOWEL DISEASE AND SARCOPENIA: A FOCUS ON MUSCLE STRENGTH - NARRATIVE REVIEW. Arq Gastroenterol. 2023;60:373-382. doi:https://doi.org/10.1590/S0004-2803.230302023-45
2. Wallace KL, Zheng LB, Kanazawa Y, Shih DQ. Immunopathology of inflammatory bowel disease. World J Gastroenterol. 2014;20(1):6-21. doi:10.3748/wjg.v20.i1.6
3. Friedrich M, Pohin M, Powrie F. Cytokine Networks in the Pathophysiology of Inflammatory Bowel Disease. Immunity. 2019;50(4):992-1006. doi:10.1016/j.immuni.2019.03.017
4. Intestinal homeostasis and its breakdown in inflammatory bowel disease - PubMed. Accessed December 14, 2024. https://pubmed.ncbi.nlm.nih.gov/21677746/
5. (PDF) Endoscopic Diagnosis and Differentiation of Inflammatory Bowel Disease. Accessed December 25, 2024. https://www.researchgate.net/publication/305721789_Endoscopic_Diagnosis_and_Differentiation_of_Inflammatory_Bowel_Disease
6. Scaldaferri F, Pizzoferrato M, Lopetuso LR, et al. Nutrition and IBD: Malnutrition and/or Sarcopenia? A Practical Guide. Gastroenterol Res Pract. 2017;2017:8646495. doi:10.1155/2017/8646495
7. Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12(4):249-256. doi:10.1016/j.jamda.2011.01.003
8. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. doi:10.1093/ageing/afy169
9. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(4):601. doi:10.1093/ageing/afz046
10. Mijnarends DM, Koster A, Schols JMGA, et al. Physical activity and incidence of sarcopenia: the population-based AGES-Reykjavik Study. Age Ageing. 2016;45(5):614-620. doi:10.1093/ageing/afw090
11. Muscaritoli M, Anker SD, Argilés J, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics.” Clin Nutr. 2010;29(2):154-159. doi:10.1016/j.clnu.2009.12.004
12. Summary comments - ScienceDirect. Accessed December 14, 2024. https://www.sciencedirect.com/science/article/abs/pii/S0002916523436945
13. Anker SD, Morley JE, von Haehling S. Welcome to the ICD-10 code for sarcopenia. J Cachexia Sarcopenia Muscle. 2016;7(5):512-514. doi:10.1002/jcsm.12147
14. Marzetti E, Calvani R, Tosato M, et al. Sarcopenia: an overview. Aging Clin Exp Res. 2017;29(1):11-17. doi:10.1007/s40520-016-0704-5
15. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia - PubMed. Accessed December 14, 2024. https://pubmed.ncbi.nlm.nih.gov/21527165/
16. Exter SH, Koenders N, Wees P, Berg MGA. A systematic review of the psychometric properties of physical performance tests for sarcopenia in community-dwelling older adults. Age Ageing. 2024;53(6):afae113. doi:10.1093/ageing/afae113
17. Fatani H, Olaru A, Stevenson R, et al. Systematic review of sarcopenia in inflammatory bowel disease. Clin Nutr. 2023;42(8):1276-1291. doi:10.1016/j.clnu.2023.05.002
18. Prevalence of sarcopenia in the world: a systematic review and meta- analysis of general population studies - PubMed. Accessed December 14, 2024. https://pubmed.ncbi.nlm.nih.gov/28523252/
19. Labarthe G, Dolores M, Verdalle-Cazes M, et al. Magnetic resonance imaging assessment of body composition parameters in Crohn’s disease. Dig Liver Dis. 2020;52(8):878-884. doi:10.1016/j.dld.2020.06.024
20. Magnetic resonance imaging assessment of body composition parameters in Crohn’s disease - PubMed. Accessed December 14, 2024. https://pubmed.ncbi.nlm.nih.gov/32622612/
21. Combination of sarcopenia and high visceral fat predict poor outcomes in patients with Crohn’s disease - PubMed. Accessed December 14, 2024. https://pubmed.ncbi.nlm.nih.gov/33531636/
22. Holt DQ, Varma P, Strauss BJG, Rajadurai AS, Moore GT. Low muscle mass at initiation of anti-TNF therapy for inflammatory bowel disease is associated with early treatment failure: a retrospective analysis. Eur J Clin Nutr. 2017;71(6):773-777. doi:10.1038/ejcn.2017.10
23. Pedersen M, Cromwell J, Nau P. Sarcopenia is a Predictor of Surgical Morbidity in Inflammatory Bowel Disease. Inflamm Bowel Dis. 2017;23(10):1867-1872. doi:10.1097/MIB.0000000000001166
24. Grillot J, D’Engremont C, Parmentier AL, et al. Sarcopenia and visceral obesity assessed by computed tomography are associated with adverse outcomes in patients with Crohn’s disease. Clin Nutr. 2020;39(10):3024-3030. doi:10.1016/j.clnu.2020.01.001
25. Holt DQ, Varma P, Strauss BJG, Rajadurai AS, Moore GT. Low muscle mass at initiation of anti-TNF therapy for inflammatory bowel disease is associated with early treatment failure: a retrospective analysis. Eur J Clin Nutr. 2017;71(6):773-777. doi:10.1038/ejcn.2017.10
26. Ge X, Xia J, Wu Y, et al. Sarcopenia assessed by computed tomography is associated with colectomy in patients with acute severe ulcerative colitis. Eur J Clin Nutr. 2022;76(3):410-418. doi:10.1038/s41430-021-00953-y
27. Sarcopenia assessed by computed tomography is associated with colectomy in patients with acute severe ulcerative colitis - PubMed. Accessed December 14, 2024. https://pubmed.ncbi.nlm.nih.gov/34131303/
28. Cederholm T, Barazzoni R, Austin P, et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr. 2017;36(1):49-64. doi:10.1016/j.clnu.2016.09.004
29. Nishikawa H, Nakamura S, Miyazaki T, et al. Inflammatory Bowel Disease and Sarcopenia: Its Mechanism and Clinical Importance. J Clin Med. 2021;10(18):4214. doi:10.3390/jcm10184214
30. Goh J, O’Morain CA. Review article: nutrition and adult inflammatory bowel disease. Aliment Pharmacol Ther. 2003;17(3):307-320. doi:10.1046/j.1365-2036.2003.01482.x
31. Han PD, Burke A, Baldassano RN, Rombeau JL, Lichtenstein GR. Nutrition and inflammatory bowel disease. Gastroenterol Clin North Am. 1999;28(2):423-443, ix. doi:10.1016/s0889-8553(05)70063-7
32. Balestrieri P, Ribolsi M, Guarino MPL, Emerenziani S, Altomare A, Cicala M. Nutritional Aspects in Inflammatory Bowel Diseases. Nutrients. 2020;12(2):372. doi:10.3390/nu12020372
33. Hanauer SB, Stathopoulos G. Risk-benefit assessment of drugs used in the treatment of inflammatory bowel disease. Drug Saf. 1991;6(3):192-219. doi:10.2165/00002018-199106030-00005
34. Capristo E, Addolorato G, Mingrone G, Greco AV, Gasbarrini G. Effect of disease localization on the anthropometric and metabolic features of Crohn’s disease. Am J Gastroenterol. 1998;93(12):2411-2419. doi:10.1111/j.1572-0241.1998.00696.x
35. Hébuterne X, Filippi J, Al-Jaouni R, Schneider S. Nutritional consequences and nutrition therapy in Crohn’s disease. Gastroenterol Clin Biol. 2009;33 Suppl 3:S235-244. doi:10.1016/S0399-8320(09)73159-8
36. Kaitha S, Bashir M, Ali T. Iron deficiency anemia in inflammatory bowel disease. World J Gastrointest Pathophysiol. 2015;6(3):62-72. doi:10.4291/wjgp.v6.i3.62
37. Saltzman JR, Russell RM. Nutritional consequences of intestinal bacterial overgrowth. Compr Ther. 1994;20(9):523-530.
38. Rutgers HC, Batt RM, Proud FJ, et al. Intestinal permeability and function in dogs with small intestinal bacterial overgrowth. J Small Anim Pract. 1996;37(9):428-434. doi:10.1111/j.1748-5827.1996.tb02443.x
39. Wexner SD, Rosen L, Lowry A, et al. Practice parameters for the treatment of mucosal ulcerative colitis--supporting documentation. The Standards Practice Task Force. The American Society of Colon and Rectal Surgeons. Dis Colon Rectum. 1997;40(11):1277-1285. doi:10.1007/BF02050809
40. Gardiner KR, Dasari BVM. Operative management of small bowel Crohn’s disease. Surg Clin North Am. 2007;87(3):587-610. doi:10.1016/j.suc.2007.03.011
41. Role of bile acid malabsorption in pathogenesis of diarrhea and steatorrhea in patients with ileal resection. I. Response to cholestyramine or replacement of dietary long chain triglyceride by medium chain triglyceride - PubMed. Accessed December 15, 2024. https://pubmed.ncbi.nlm.nih.gov/5029077/
42. Lucendo AJ, De Rezende LC. Importance of nutrition in inflammatory bowel disease. World J Gastroenterol. 2009;15(17):2081-2088. doi:10.3748/wjg.15.2081
43. Cabré E, Gassull MA. Nutrition in inflammatory bowel disease: impact on disease and therapy. Curr Opin Gastroenterol. 2001;17(4):342-349. doi:10.1097/00001574-200107000-00008
44. Chang KV, Wu WT, Chen YH, et al. Enhanced serum levels of tumor necrosis factor-α, interleukin-1β, and -6 in sarcopenia: alleviation through exercise and nutrition intervention. Aging (Albany NY). 2023;15(22):13471-13485. doi:10.18632/aging.205254
45. Weisshof R, Chermesh I. Micronutrient deficiencies in inflammatory bowel disease. Curr Opin Clin Nutr Metab Care. 2015;18(6):576-581. doi:10.1097/MCO.0000000000000226
46. Huang S, Ma J, Zhu M, Ran Z. Status of serum vitamin B12 and folate in patients with inflammatory bowel disease in China. Intest Res. 2017;15(1):103-108. doi:10.5217/ir.2017.15.1.103
47. Headstrom PD, Rulyak SJ, Lee SD. Prevalence of and risk factors for vitamin B(12) deficiency in patients with Crohn’s disease. Inflamm Bowel Dis. 2008;14(2):217-223. doi:10.1002/ibd.20282
48. (PDF) Association between folic acid levels and sarcopenia in American adults: evidence from NHANES. Accessed December 15, 2024. https://www.researchgate.net/publication/380204116_Association_between_folic_acid_levels_and_sarcopenia_in_American_adults_evidence_from_NHANES
49. Serum folate predicts muscle strength: a pilot cross-sectional study of the association between serum vitamin levels and muscle strength and gait measures in patients >65 years old with diabetes mellitus in a primary care setting - PMC. Accessed December 15, 2024. https://pmc.ncbi.nlm.nih.gov/articles/PMC5070191/
50. Ates Bulut E, Soysal P, Aydin AE, Dokuzlar O, Kocyigit SE, Isik AT. Vitamin B12 deficiency might be related to sarcopenia in older adults. Exp Gerontol. 2017;95:136-140. doi:10.1016/j.exger.2017.05.017
51. Vascular complications of inflammatory bowel disease - PubMed. Accessed December 15, 2024. https://pubmed.ncbi.nlm.nih.gov/3080643/
52. Veeranki S, Tyagi SC. Defective homocysteine metabolism: potential implications for skeletal muscle malfunction. Int J Mol Sci. 2013;14(7):15074-15091. doi:10.3390/ijms140715074
53. Lu B, Shen L, Zhu H, Xi L, Wang W, Ouyang X. Association between serum homocysteine and sarcopenia among hospitalized older Chinese adults: a cross-sectional study. BMC Geriatr. 2022;22:896. doi:10.1186/s12877-022-03632-0
54. Mouli VP, Ananthakrishnan AN. Review article: vitamin D and inflammatory bowel diseases. Aliment Pharmacol Ther. 2014;39(2):125-136. doi:10.1111/apt.12553
55. Low vitamin D status is associated with reduced muscle mass and impaired physical performance in frail elderly people - PubMed. Accessed December 11, 2024. https://pubmed.ncbi.nlm.nih.gov/23942175/
56. Visser M, Deeg DJH, Lips P, Longitudinal Aging Study Amsterdam. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab. 2003;88(12):5766-5772. doi:10.1210/jc.2003-030604
57. Vitamin D treatment for the prevention of falls in older adults: systematic review and meta-analysis - PubMed. Accessed December 15, 2024. https://pubmed.ncbi.nlm.nih.gov/20579169/
58. Vitamin D and Sarcopenia/Falls - PubMed. Accessed December 15, 2024. https://pubmed.ncbi.nlm.nih.gov/26059567/
59. Antunes CV de A, Hallack Neto AE, Nascimento CR de A, et al. Anemia in inflammatory bowel disease outpatients: prevalence, risk factors, and etiology. Biomed Res Int. 2015;2015:728925. doi:10.1155/2015/728925
60. Alves RA, Miszputen SJ, Figueiredo MS. Anemia in inflammatory bowel disease: prevalence, differential diagnosis and association with clinical and laboratory variables. Sao Paulo Med J. 2014;132(3):140-146. doi:10.1590/1516-3180.2014.1323568
61. Serum iron level is independently associated with sarcopenia: a retrospective study | Scientific Reports. Accessed December 25, 2024. https://www.nature.com/articles/s41598-024-61429-0
62. Vagianos K, Bector S, McConnell J, Bernstein CN. Nutrition assessment of patients with inflammatory bowel disease. JPEN J Parenter Enteral Nutr. 2007;31(4):311-319. doi:10.1177/0148607107031004311
63. Zinc is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health - PubMed. Accessed December 15, 2024. https://pubmed.ncbi.nlm.nih.gov/25988117/
64. Rederstorff M, Krol A, Lescure A. Understanding the importance of selenium and selenoproteins in muscle function. Cell Mol Life Sci. 2006;63(1):52-59. doi:10.1007/s00018-005-5313-y
65. Li J, Jiang C, Wu L, Tian J, Zhang B. Dietary selenium intake and sarcopenia in American adults. Front Nutr. 2024;11:1449980. doi:10.3389/fnut.2024.1449980
66. Rando TA. Oxidative stress and the pathogenesis of muscular dystrophies. Am J Phys Med Rehabil. 2002;81(11 Suppl):S175-186. doi:10.1097/00002060-200211001-00018
67. Baumann CW, Kwak D, Liu HM, Thompson LV. Age-induced oxidative stress: how does it influence skeletal muscle quantity and quality? J Appl Physiol (1985). 2016;121(5):1047-1052. doi:10.1152/japplphysiol.00321.2016
68. Liu Z, Yadav PK, Xu X, et al. The increased expression of IL-23 in inflammatory bowel disease promotes intraepithelial and lamina propria lymphocyte inflammatory responses and cytotoxicity. J Leukoc Biol. 2011;89(4):597-606. doi:10.1189/jlb.0810456
69. Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest. 2006;116(5):1310-1316. doi:10.1172/JCI21404
70. Interleukin-6 trans-signaling in inflammatory bowel disease - PubMed. Accessed December 15, 2024. https://pubmed.ncbi.nlm.nih.gov/17045835/
71. Mucosal imbalance of IL-1 and IL-1 receptor antagonist in inflammatory bowel disease. A novel mechanism of chronic intestinal inflammation - PubMed. Accessed December 15, 2024. https://pubmed.ncbi.nlm.nih.gov/7868909/
72. Sands BE, Kaplan GG. The role of TNFalpha in ulcerative colitis. J Clin Pharmacol. 2007;47(8):930-941. doi:10.1177/0091270007301623
73. Muñoz-Cánoves P, Scheele C, Pedersen BK, Serrano AL. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J. 2013;280(17):4131-4148. doi:10.1111/febs.12338
74. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1 - PMC. Accessed December 15, 2024. https://pmc.ncbi.nlm.nih.gov/articles/PMC4166716/
75. Tumor necrosis factor alpha blockade restores growth hormone signaling in murine colitis - PubMed. Accessed December 15, 2024. https://pubmed.ncbi.nlm.nih.gov/15887111/
76. Lucia Casadonte CJ, Brown J, Strople J, Neighbors K, Fei L, Alonso EM. Low Insulin-like Growth Factor-1 Influences Fatigue and Quality of Life in Children With Inflammatory Bowel Disease. J Pediatr Gastroenterol Nutr. 2018;67(5):616-621. doi:10.1097/MPG.0000000000002057
77. Dual Role of Reactive Oxygen Species in Muscle Function: Can Antioxidant Dietary Supplements Counteract Age-Related Sarcopenia? - PubMed. Accessed December 15, 2024. https://pubmed.ncbi.nlm.nih.gov/31387214/
78. Reactive oxygen species in sarcopenia: Should we focus on excess oxidative damage or defective redox signalling? - PubMed. Accessed December 15, 2024. https://pubmed.ncbi.nlm.nih.gov/27161871/
79. Lamb CA, Kennedy NA, Raine T, et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut. 2019;68(Suppl 3):s1-s106. doi:10.1136/gutjnl-2019-318484
80. Selinger CP, Rosiou K, Lenti MV. Biological therapy for inflammatory bowel disease: cyclical rather than lifelong treatment? BMJ Open Gastroenterology. 2024;11(1):e001225. doi:10.1136/bmjgast-2023-001225
81. Subramaniam K, Fallon K, Ruut T, et al. Infliximab reverses inflammatory muscle wasting (sarcopenia) in Crohn’s disease. Aliment Pharmacol Ther. 2015;41(5):419-428. doi:10.1111/apt.13058
82. Csontos ÁA, Molnár A, Piri Z, et al. The Effect of anti-TNFα Induction Therapy on the Nutritional Status and Dietary Intake in Inflammatory Bowel Disease. J Gastrointestin Liver Dis. 2016;25(1):49-56. doi:10.15403/jgld.2014.1121.251.tnf
83. Dhaliwal A, Quinlan JI, Overthrow K, et al. Sarcopenia in Inflammatory Bowel Disease: A Narrative Overview. Nutrients. 2021;13(2):656. doi:10.3390/nu13020656
84. Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016;22(10):1079-1089. doi:10.1038/nm.4185
85. Huang W, Guo HL, Deng X, et al. Short-Chain Fatty Acids Inhibit Oxidative Stress and Inflammation in Mesangial Cells Induced by High Glucose and Lipopolysaccharide. Exp Clin Endocrinol Diabetes. 2017;125(2):98-105. doi:10.1055/s-0042-121493
86. Murray RL, Zhang W, Liu J, et al. Tributyrin, a Butyrate Pro-Drug, Primes Satellite Cells for Differentiation by Altering the Epigenetic Landscape. Cells. 2021;10(12):3475. doi:10.3390/cells10123475
87. Liu C, Wong PY, Wang Q, et al. Short-chain fatty acids enhance muscle mass and function through the activation of mTOR signalling pathways in sarcopenic mice. Journal of Cachexia, Sarcopenia and Muscle. 2024;15(6):2387-2401. doi:10.1002/jcsm.13573
88. Shanahan F, van Sinderen D, O’Toole PW, Stanton C. Feeding the microbiota: transducer of nutrient signals for the host. Gut. 2017;66(9):1709-1717. doi:10.1136/gutjnl-2017-313872
89. Bischoff SC, Bager P, Escher J, et al. ESPEN guideline on Clinical Nutrition in inflammatory bowel disease. Clinical Nutrition. 2023;42(3):352-379. doi:10.1016/j.clnu.2022.12.004
90. Santarpia L, Alfonsi L, Castiglione F, et al. Nutritional Rehabilitation in Patients with Malnutrition Due to Crohn’s Disease. Nutrients. 2019;11(12):2947. doi:10.3390/nu11122947
91. Parenteral Nutrition in Patients with Inflammatory Bowel Disease Systematic Review, Meta-Analysis and Meta-Regression - PubMed. Accessed December 17, 2024. https://pubmed.ncbi.nlm.nih.gov/31766687/
92. Peripheral parenteral nutrition is no better than enteral nutrition in acute exacerbation of Crohn’s disease: a prospective trial - PubMed. Accessed December 17, 2024. https://pubmed.ncbi.nlm.nih.gov/2118925/
93. The Medical Management of Paediatric Crohn’s Disease: an ECCO-ESPGHAN Guideline Update - PubMed. Accessed December 15, 2024. https://pubmed.ncbi.nlm.nih.gov/33026087/
94. Morley JE, Argiles JM, Evans WJ, et al. Nutritional Recommendations for the Management of Sarcopenia. J Am Med Dir Assoc. 2010;11(6):391-396. doi:10.1016/j.jamda.2010.04.014
95. Engels M, Cross RK, Long MD. Exercise in patients with inflammatory bowel diseases: current perspectives. Clin Exp Gastroenterol. 2017;11:1-11. doi:10.2147/CEG.S120816
96. Wl H, Im L, Rr P, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Medicine and science in sports and exercise. 2007;39(8). doi:10.1249/mss.0b013e3180616b27
97. Ball E. Exercise guidelines for patients with inflammatory bowel disease. Gastroenterol Nurs. 1998;21(3):108-111. doi:10.1097/00001610-199805000-00002
98. Ordille AJ, Phadtare S. Intensity-specific considerations for exercise for patients with inflammatory bowel disease. Gastroenterology Report. 2023;11:goad004. doi:10.1093/gastro/goad004
99. Hurst C, Robinson SM, Witham MD, et al. Resistance exercise as a treatment for sarcopenia: prescription and delivery. Age Ageing. 2022;51(2):afac003. doi:10.1093/ageing/afac003
100. Dent E, Morley JE, Cruz-Jentoft AJ, et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, Diagnosis and Management. The Journal of nutrition, health and aging. 2018;22(10):1148-1161. doi:10.1007/s12603-018-1139-9
101. Dose–Response Relationships of Resistance Training in Healthy Old Adults: A Systematic Review and Meta-Analysis | Sports Medicine. Accessed December 14, 2024. https://link.springer.com/article/10.1007/s40279-015-0385-9?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilot&getft_integrator=sciencedirect_contenthosting
102. mTOR signaling and the molecular adaptation to resistance exercise - PubMed. Accessed December 14, 2024. https://pubmed.ncbi.nlm.nih.gov/17095929/
103. Erlich AT, Tryon LD, Crilly MJ, et al. Function of specialized regulatory proteins and signaling pathways in exercise-induced muscle mitochondrial biogenesis. Integr Med Res. 2016;5(3):187-197. doi:10.1016/j.imr.2016.05.003
104. Konopka AR, Harber MP. Skeletal muscle hypertrophy after aerobic exercise training. Exerc Sport Sci Rev. 2014;42(2):53-61. doi:10.1249/JES.0000000000000007
105. Beavers KM, Brinkley TE, Nicklas BJ. Effect of exercise training on chronic inflammation. Clin Chim Acta. 2010;411(11-12):785-793. doi:10.1016/j.cca.2010.02.069
106. Nash D, Hughes MG, Butcher L, et al. IL‐6 signaling in acute exercise and chronic training: Potential consequences for health and athletic performance. Scand J Med Sci Sports. 2023;33(1):4-19. doi:10.1111/sms.14241
107. Serrano AL, Baeza-Raja B, Perdiguero E, Jardí M, Muñoz-Cánoves P. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2008;7(1):33-44. doi:10.1016/j.cmet.2007.11.011
108. Ellingsgaard H, Hauselmann I, Schuler B, et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med. 2011;17(11):1481-1489. doi:10.1038/nm.2513
109. Hamer M, Sabia S, Batty GD, et al. Physical activity and inflammatory markers over 10 years: follow-up in men and women from the Whitehall II cohort study. Circulation. 2012;126(8):928-933. doi:10.1161/CIRCULATIONAHA.112.103879
110. Abd El-Kader SM, Al-Shreef FM. Inflammatory cytokines and immune system modulation by aerobic versus resisted exercise training for elderly. Afr Health Sci. 2018;18(1):120-131. doi:10.4314/ahs.v18i1.16
111. Zheng G, Qiu P, Xia R, et al. Effect of Aerobic Exercise on Inflammatory Markers in Healthy Middle-Aged and Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Aging Neurosci. 2019;11:98. doi:10.3389/fnagi.2019.00098
112. Saxena A, Fletcher E, Larsen B, Baliga MS, Durstine JL, Fayad R. Effect of exercise on chemically-induced colitis in adiponectin deficient mice. J Inflamm (Lond). 2012;9(1):30. doi:10.1186/1476-9255-9-30
113. Gulick CN, Peddie MC, Cameron C, Bradbury K, Rehrer NJ. Physical activity, dietary protein and insulin-like growth factor 1: Cross-sectional analysis utilising UK Biobank. Growth Hormone & IGF Research. 2020;55:101353. doi:10.1016/j.ghir.2020.101353
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Michalina Jurkiewicz, Karolina Siembab, Julia Białeta, Katarzyna Rowińska, Agnieszka Napieralska, Wiktor Garbarczyk, Albert Kapla, Alicja Černohorská, Daria Bednarczyk, Wiktoria Pysiewicz

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 145
Number of citations: 0