Exploring Rhodiola rosea: A Comprehensive Review of Its Adaptogenic Effects and Medical Relevance
DOI:
https://doi.org/10.12775/QS.2024.29.55631Keywords
rhodiola rosea, adaptogen, diabetes, cardiovascular diseases, neurological diseaseAbstract
Introduction
Rhodiola rosea L. is an adaptogen with an international reach, widely used in modern medicine. Scientific studies indicate that extracts obtained from Rhodiola rosea L. have a beneficial effect on various pathological conditions, including circulatory system diseases, neurological disorders and metabolic ailments. The wide range of applications of these compounds, combined with potentially low toxicity, makes Rhodiola rosea L. a promising candidate for integration in therapies supporting the treatment of diseases affecting various body systems. The aim of this review is to analyze contemporary research on the potential properties of Rhodiola rosea L., as well as to establish the foundation for further research and development of preparations based on this plant.
Materials and Methods
The review was conducted by searching PubMed and other scientific databases focusing on currently available publications. The literature available in the PubMed database was reviewed using the following keywords: “rhodiola rosea”, “adaptogen”, "cardiovascular diseases”, “neurological diseases”, “diabetes”. The analysis of 45 articles published between 1998-2023 was used to write the paper.
References
Stace, C. A. (2010). New Flora of the British Isles (Third ed.). Cambridge, U.K.: Cambridge University Press. ISBN 9780521707725
Li Y, Pham V, Bui M, et al. Rhodiola rosea L.: an herb with anti-stress, anti-aging, and immunostimulating properties for cancer chemoprevention. Curr Pharmacol Rep. 2017;3(6):384-395. doi:10.1007/s40495-017-0106-1
Moran, Reid V, in Flora of North America. volume 8. pages 164-167
A. Panossian, G. Wikman, J. Sarris, Rosenroot (Rhodiola rosea): Traditional use, chemical composition, pharmacology and clinical efficacy,Phytomedicine,Volume 17, Issue 7,2010,Pages 481-493, ISSN 0944-7113,https://doi.org/10.1016/j.phymed.2010.02.002.
Evstavieva L.; Todorova M.; Antonova D.; Staneva J. (2010). "Chemical composition of the essential oils of Rhodiola rosea L. of three different origins". Pharmacogn Mag. 6 (24): 256–258. doi:10.4103/0973-1296.71782
Brown, Richard & Gerbarg, Patricia & Ramazanov, Zakir. (2002). Rhodiola rosea: A Phytomedicinal Overview. Herbal Gram. 56.
Panossian, A.; Wikman, G.; Sarris, J. Rosenroot (Rhodiola rosea): Traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine 2010, 17, 481–493.
Lian-ying Liao i inni, A preliminary review of studies on adaptogens: comparison of their bioactivity in TCM with that of ginseng-like herbs used worldwide, „Chinese Medicine”, 13, 2018
Sophia E. Gerontakos i inni, A Critical Review to Identify the Domains Used to Measure the Effect and Outcome of Adaptogenic Herbal Medicines, „The Yale Journal of Biology and Medicine”, 93, 2020
Xu W, Larbi A. Immunity and Inflammation: From Jekyll to Hyde. Exp Gerontol. 2018;107:98-101. doi:10.1016/j.exger.2017.11.018
Coors A, Brosch M, Kahl E, et al. Rhodiola rosea root extract has antipsychotic-like effects in rodent models of sensorimotor gating. J Ethnopharmacol. 2019;235:320-328. doi:10.1016/j.jep.2019.02.031
Jin M, Wang C, Xu Y, et al. Pharmacological effects of salidroside on central nervous system diseases. Biomed Pharmacother. 2022;156:113746. doi:10.1016/j.biopha.2022.113746
Tao H, Wu X, Cao J, et al. Rhodiola species: A comprehensive review of traditional use, phytochemistry, pharmacology, toxicity, and clinical study. Med Res Rev. 2019;39(5):1779-1850. doi:10.1002/med.21564
Perfumi M, Mattioli L. Adaptogenic and central nervous system effects of single doses of 3% rosavin and 1% salidroside Rhodiola rosea L. extract in mice. Phytother Res. 2007;21(1):37-43. doi:10.1002/ptr.2013
Carlini EA. Plants and the central nervous system. Pharmacol Biochem Behav. 2003;75(3):501-512. doi:10.1016/s0091-3057(03)00112-6
Nabavi SF, Braidy N, Orhan IE, Badiee A, Daglia M, Nabavi SM. Rhodiola rosea L. and Alzheimer's Disease: From Farm to Pharmacy. Phytother Res. 2016;30(4):532-539. doi:10.1002/ptr.5569
Zhou, Z.D., Yi, L.X., Wang, D.Q. et al. Role of dopamine in the pathophysiology of Parkinson’s disease. Transl Neurodegener 12, 44 (2023). https://doi.org/10.1186/s40035-023-00378-6
Bernatoniene J, Jakstas V, Kopustinskiene DM. Phenolic Compounds of Rhodiola rosea L. as the Potential Alternative Therapy in the Treatment of Chronic Diseases. Int J Mol Sci. 2023;24(15):12293. Published 2023 Jul 31. doi:10.3390/ijms241512293
Zhao HB, Ma H, Ha XQ, et al. Salidroside induces rat mesenchymal stem cells to differentiate into dopaminergic neurons. Cell Biol Int. 2014;38(4):462-471. doi:10.1002/cbin.10217
Panza i inni, A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease, „Nat Rev Neurol”, 2019
Tiraboschi P, Hansen LA, Thal LJ, Corey-Bloom J. The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology. 2004;62(11):1984-1989. doi:10.1212/01.wnl.0000129697.01779.0a
Liao ZL, Su H, Tan YF, et al. Salidroside protects PC-12 cells against amyloid β-induced apoptosis by activation of the ERK1/2 and AKT signaling pathways. Int J Mol Med. 2019;43(4):1769-1777. doi:10.3892/ijmm.2019.4088
Nabavi SF, Braidy N, Orhan IE, Badiee A, Daglia M, Nabavi SM. Rhodiola rosea L. and Alzheimer's Disease: From Farm to Pharmacy. Phytother Res. 2016;30(4):532-539. doi:10.1002/ptr.5569
van Diermen D, Marston A, Bravo J, Reist M, Carrupt PA, Hostettmann K. Monoamine oxidase inhibition by Rhodiola rosea L. roots. J Ethnopharmacol. 2009;122(2):397-401. doi:10.1016/j.jep.2009.01.007
Rother KI. Diabetes treatment--bridging the divide. N Engl J Med. 2007;356(15):1499-1501. doi:10.1056/NEJMp078030
Bai XL, Deng XL, Wu GJ, Li WJ, Jin S. Rhodiola and salidroside in the treatment of metabolic disorders. Mini Rev Med Chem. 2019;19(19):1611-1626. doi:10.2174/1389557519666190903115424
Zhao CC, Wu XY, Yi H, Chen R, Fan G. The Therapeutic Effects and Mechanisms of Salidroside on Cardiovascular and Metabolic Diseases: An Updated Review. Chem Biodivers. 2021;18(7):e2100033. doi:10.1002/cbdv.202100033
Jafari M, Juanson Arabit JG, Courville R, et al. The impact of Rhodiola rosea on biomarkers of diabetes, inflammation, and microbiota in a leptin receptor-knockout mouse model. Sci Rep. 2022;12(1):10581. Published 2022 Jun 22. doi:10.1038/s41598-022-14241-7
Niu CS, Chen LJ, Niu HS. Antihyperglycemic action of rhodiola-aqeous extract in type1-like diabetic rats. BMC Complement Altern Med. 2014;14:20. Published 2014 Jan 13. doi:10.1186/1472-6882-14-20
Yuan S, Liu J, Sun Z, et al. Effects of Self-Made Prescription Compound Rhodiola on the Ultrastructure of Podocytes in Rats with Type 2 Diabetic Nephropathy [retracted in: Emerg Med Int. 2024 Jan 24;2024:9875324. doi: 10.1155/2024/9875324]. Emerg Med Int. 2022;2022:3417557. Published 2022 Jun 22. doi:10.1155/2022/3417557
Zhao D, Sun X, Lv S, et al. Salidroside attenuates oxidized low‑density lipoprotein‑induced endothelial cell injury via promotion of the AMPK/SIRT1 pathway. Int J Mol Med. 2019;43(6):2279-2290. doi:10.3892/ijmm.2019.4153
Wang ZS, Gao F, Lu FE. Effect of ethanol extract of Rhodiola rosea on the early nephropathy in type 2 diabetic rats. J Huazhong Univ Sci Technolog Med Sci. 2013;33(3):375-378. doi:10.1007/s11596-013-1127-6
Dehghan, M., Mente, A., Zhang, X., Swaminathan, S., Li, W., Mohan, V., Iqbal, R., Kumar, R., Wentzel-Viljoen, E., Rosengren, A., Amma, L. I., Avezum, A., Chifamba, J., Diaz, R., Khatib, R., Lear, S., Lopez-Jaramillo, P., Liu, X., Gupta, R., Mohammadifard, N., … Prospective Urban Rural Epidemiology (PURE) study investigators (2017). Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet (London, England), 390(10107), 2050–2062. https://doi.org/10.1016/S0140-6736(17)32252-3
Gao, Q., & Shao, M. (2017). Salidroside improve the contractoin and dilatation function of vascular endotheliocyte. Shaanxi Medical Journal, 46(2), 304-306. [Google Scholar]
Leung, S. B., Zhang, H., Lau, C. W., Huang, Y., & Lin, Z. (2013). Salidroside improves homocysteine-induced endothelial dysfunction by reducing oxidative stress. Evidence-based complementary and alternative medicine : eCAM, 2013, 679635. https://doi.org/10.1155/2013/679635
Gupta, V., Lahiri, S. S., Sultana, S., Tulsawani, R. K., & Kumar, R. (2010). Anti-oxidative effect of Rhodiola imbricata root extract in rats during cold, hypoxia and restraint (C-H-R) exposure and post-stress recovery. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 48(4), 1019–1025. https://doi.org/10.1016/j.fct.2010.01.012
Haunstetter, A., & Izumo, S. (1998). Apoptosis: basic mechanisms and implications for cardiovascular disease. Circulation research, 82(11), 1111–1129. https://doi.org/10.1161/01.res.82.11.1111
Foo, R. S., Mani, K., & Kitsis, R. N. (2005). Death begets failure in the heart. The Journal of clinical investigation, 115(3), 565–571. https://doi.org/10.1172/JCI24569
Zhong, H., Xin, H., Wu, L. X., & Zhu, Y. Z. (2010). Salidroside attenuates apoptosis in ischemic cardiomyocytes: a mechanism through a mitochondria-dependent pathway. Journal of pharmacological sciences, 114(4), 399–408. https://doi.org/10.1254/jphs.10078fp
Zhu, L., Wei, T., Gao, J., Chang, X., He, H., Luo, F., Zhou, R., Ma, C., Liu, Y., & Yan, T. (2015). The cardioprotective effect of salidroside against myocardial ischemia reperfusion injury in rats by inhibiting apoptosis and inflammation. Apoptosis : an international journal on programmed cell death, 20(11), 1433–1443. https://doi.org/10.1007/s10495-015-1174-5
Cheng, Y. Z., Chen, L. J., Lee, W. J., Chen, M. F., Jung Lin, H., & Cheng, J. T. (2012). Increase of myocardial performance by Rhodiola-ethanol extract in diabetic rats. Journal of ethnopharmacology, 144(2), 234–239. https://doi.org/10.1016/j.jep.2012.08.029
Hsiao, Y. W., Tsai, Y. N., Huang, Y. T., Liu, S. H., Lin, Y. J., Lo, L. W., Hu, Y. F., Chung, F. P., Lin, S. F., Chang, S. L., Higa, S., & Chen, S. A. (2021). Rhodiola crenulata reduces ventricular arrhythmia through mitigating the activation of IL-17 and inhibiting the MAPK signaling pathway. Cardiovascular drugs and therapy, 35(5), 889–900. https://doi.org/10.1007/s10557-020-07072-z
Zhang, B. C., Li, W. M., Guo, R., & Xu, Y. W. (2012). Salidroside decreases atherosclerotic plaque formation in low-density lipoprotein receptor-deficient mice. Evidence-based complementary and alternative medicine : eCAM, 2012, 607508. https://doi.org/10.1155/2012/607508
Liu, S. H., Hsiao, Y. W., Chong, E., Singhal, R., Fong, M. C., Tsai, Y. N., Hsu, C. P., Chen, Y. C., Chen, Y. J., Chiou, C. W., Chiang, S. J., Chang, S. L., & Chen, S. A. (2016). Rhodiola Inhibits Atrial Arrhythmogenesis in a Heart Failure Model. Journal of cardiovascular electrophysiology, 27(9), 1093–1101. https://doi.org/10.1111/jce.13026
Lee, W. J., Chung, H. H., Cheng, Y. Z., Lin, H. J., & Cheng, J. T. (2013). Rhodiola-water extract induces β-endorphin secretion to lower blood pressure in spontaneously hypertensive rats. Phytotherapy research : PTR, 27(10), 1543–1547. https://doi.org/10.1002/ptr.4900
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Marta Głąbień, Aleksandra Rajewska, Anna Kuśnierz, Karolina Kusiak, Daria Aleksandrowicz, Olga Wieczorek, Zofia Jakubczak, Maria Weronika Zimniak, Patryk Śliwiak , Aneta Kondratowicz
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 62
Number of citations: 0