Correlation between muscle tissue and type 2 diabetes
DOI:
https://doi.org/10.12775/QS.2024.18.53366Keywords
DM2, diabetes type 2, muscleAbstract
Diabetes is one of the most common diseases in the world. There are several types of it with different etiologies. The most common type of diabetes is type 2. Every year, DM2 contributes to the deaths of millions of people worldwide. Its complications pose a huge health as well as economic problem. Nowadays, pharmaceutical companies are outdoing themselves in synthesizing new drugs, using newer and newer mechanisms of action. This meets with the approval of patients – It is easier to take a pill instead of changing your lifestyle. However, it is worth considering and rethinking the pathophysiology of type 2 diabetes. How to effectively reduce the risk of pre-diabetes or developing DM2? In this research study, we will try to give an insight into how important our body's muscle tissue is in the context of diabetes and why it is important to take care of its proper amount and condition. It is hoped that paying attention to this aspect in relation to diabetes will allow for a less invasive and more effective treatment of carbohydrate disorders and contribute to benefiting from the other health effects of developing proper skeletal muscle tissue in the human body.
References
Guo H, Wu H, Li Z. The Pathogenesis of Diabetes. Int J Mol Sci. 2023;24(8):6978. Published 2023 Apr 10. doi:10.3390/ijms24086978
Marconcin P, Matos MG, Ihle A, et al. Trends of Healthy Lifestyles Among Adolescents: An Analysis of More Than Half a Million Participants From 32 Countries Between 2006 and 2014. Front Pediatr. 2021;9:645074. Published 2021 May 25. doi:10.3389/fped.2021.645074
Galiyeva D, Gusmanov A, Sakko Y, et al. Epidemiology of type 1 and type 2 diabetes mellitus in Kazakhstan: data from unified National Electronic Health System 2014-2019. BMC Endocr Disord. 2022;22(1):275. Published 2022 Nov 11. doi:10.1186/s12902-022-01200-6
Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci. 2020;21(17):6275. Published 2020 Aug 30. doi:10.3390/ijms21176275
Borse SP, Chhipa AS, Sharma V, Singh DP, Nivsarkar M. Management of Type 2 Diabetes: Current Strategies, Unfocussed Aspects, Challenges, and Alternatives. Med Princ Pract. 2021;30(2):109-121. doi:10.1159/000511002
Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of Type 2 Diabetes - Global Burden of Disease and Forecasted Trends. J Epidemiol Glob Health. 2020;10(1):107-111. doi:10.2991/jegh.k.191028.001
Zhang Y, Bullard KM, Imperatore G, Holliday CS, Benoit SR. Proportions and trends of adult hospitalizations with Diabetes, United States, 2000-2018. Diabetes Res Clin Pract. 2022;187:109862. doi:10.1016/j.diabres.2022.109862
Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-281. doi:10.1016/j.diabres.2018.02.023
Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest. 1999;104(6):787-794. doi:10.1172/JCI7231
DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009;32 Suppl 2(Suppl 2):S157-S163. doi:10.2337/dc09-S302
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev. 2018;98(4):2133-2223. doi:10.1152/physrev.00063.2017
Kolterman OG, Gray RS, Griffin J, et al. Receptor and postreceptor defects contribute to the insulin resistance in noninsulin-dependent diabetes mellitus. J Clin Invest. 1981;68(4):957-969. doi:10.1172/jci110350
Caro JF, Sinha MK, Raju SM, et al. Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes. J Clin Invest. 1987;79(5):1330-1337. doi:10.1172/JCI112958
Cusi K, Maezono K, Osman A, et al. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest. 2000;105(3):311-320. doi:10.1172/JCI7535
Jensen J, Rustad PI, Kolnes AJ, Lai YC. The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front Physiol. 2011;2:112. Published 2011 Dec 30. doi:10.3389/fphys.2011.00112
Wojtaszewski JF, Nielsen P, Kiens B, Richter EA. Regulation of glycogen synthase kinase-3 in human skeletal muscle: effects of food intake and bicycle exercise [published correction appears in Diabetes. 2003 Sep;52(9):2449. Wojtazsewski J F [corrected to Wojtaszewski J F]]. Diabetes. 2001;50(2):265-269. doi:10.2337/diabetes.50.2.265
Adeva-Andany MM, González-Lucán M, Donapetry-García C, Fernández-Fernández C, Ameneiros-Rodríguez E. Glycogen metabolism in humans. BBA Clin. 2016;5:85-100. Published 2016 Feb 27. doi:10.1016/j.bbacli.2016.02.001
Kristiansen S, Gade J, Wojtaszewski JF, Kiens B, Richter EA. Glucose uptake is increased in trained vs. untrained muscle during heavy exercise. J Appl Physiol (1985). 2000;89(3):1151-1158. doi:10.1152/jappl.2000.89.3.1151
Ross R. Does exercise without weight loss improve insulin sensitivity?. Diabetes Care. 2003;26(3):944-945. doi:10.2337/diacare.26.3.944
Petersen KF, Shulman GI. Cellular mechanism of insulin resistance in skeletal muscle. J R Soc Med. 2002;95 Suppl 42(Suppl 42):8-13.
Kennedy JW, Hirshman MF, Gervino EV, et al. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes. 1999;48(5):1192-1197. doi:10.2337/diabetes.48.5.1192
Green HJ, Bombardier E, Duhamel TA, Stewart RD, Tupling AR, Ouyang J. Metabolic, enzymatic, and transporter responses in human muscle during three consecutive days of exercise and recovery. Am J Physiol Regul Integr Comp Physiol. 2008;295(4):R1238-R1250. doi:10.1152/ajpregu.00171.2008
Kraniou GN, Cameron-Smith D, Hargreaves M. Effect of short-term training on GLUT-4 mRNA and protein expression in human skeletal muscle. Exp Physiol. 2004;89(5):559-563. doi:10.1113/expphysiol.2004.027409
Derave W, Hansen BF, Lund S, Kristiansen S, Richter EA. Muscle glycogen content affects insulin-stimulated glucose transport and protein kinase B activity. Am J Physiol Endocrinol Metab. 2000;279(5):E947-E955. doi:10.1152/ajpendo.2000.279.5.E947
Derave W, Lund S, Holman GD, Wojtaszewski J, Pedersen O, Richter EA. Contraction-stimulated muscle glucose transport and GLUT-4 surface content are dependent on glycogen content. Am J Physiol. 1999;277(6):E1103-E1110. doi:10.1152/ajpendo.1999.277.6.E1103
Vendelbo MH, Clasen BF, Treebak JT, et al. Insulin resistance after a 72-h fast is associated with impaired AS160 phosphorylation and accumulation of lipid and glycogen in human skeletal muscle. Am J Physiol Endocrinol Metab. 2012;302(2):E190-E200. doi:10.1152/ajpendo.00207.2011
Haines MS, Leong A, Porneala BC, Meigs JB, Miller KK. Association between muscle mass and diabetes prevalence independent of body fat distribution in adults under 50 years old. Nutr Diabetes. 2022;12(1):29. Published 2022 May 28. doi:10.1038/s41387-022-00204-4
Thiebaud D, Jacot E, DeFronzo RA, Maeder E, Jequier E, Felber JP. The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes. 1982;31(11):957-963. doi:10.2337/diacare.31.11.957
Baron AD, Brechtel G, Wallace P, Edelman SV. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol. 1988;255(6 Pt 1):E769-E774. doi:10.1152/ajpendo.1988.255.6.E769
Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med. 1990;322(4):223-228. doi:10.1056/NEJM199001253220403
Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III. PLoS One. 2010;5(5):e10805. doi:10.1371/journal.pone.0010805
Shishikura K, Tanimoto K, Sakai S, Tanimoto Y, Terasaki J, Hanafusa T. Association between skeletal muscle mass and insulin secretion in patients with type 2 diabetes mellitus. Endocr J. 2014;61(3):281-287. doi:10.1507/endocrj.ej13-0375
Poggiogalle E, Lubrano C, Sergi G, et al. Sarcopenic Obesity and Metabolic Syndrome in Adult Caucasian Subjects. J Nutr Health Aging. 2016;20(9):958-963. doi:10.1007/s12603-015-0638-1
Donini LM, Busetto L, Bischoff SC, et al. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obes Facts. 2022;15(3):321-335. doi:10.1159/000521241
Srikanthan P, Karlamangla AS. Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third National Health and Nutrition Examination Survey [published correction appears in J Clin Endocrinol Metab. 2012 Jun;97(6):2203]. J Clin Endocrinol Metab. 2011;96(9):2898-2903. doi:10.1210/jc.2011-0435
Son JW, Lee SS, Kim SR, et al. Low muscle mass and risk of type 2 diabetes in middle-aged and older adults: findings from the KoGES. Diabetologia. 2017;60(5):865-872. doi:10.1007/s00125-016-4196-9
Mahindru A, Patil P, Agrawal V. Role of Physical Activity on Mental Health and Well-Being: A Review. Cureus. 2023;15(1):e33475. Published 2023 Jan 7. doi:10.7759/cureus.33475
Wu H, Ballantyne CM. Skeletal muscle inflammation and insulin resistance in obesity. J Clin Invest. 2017;127(1):43-54. doi:10.1172/JCI88880
Temelkova-Kurktschiev T, Henkel E, Koehler C, Karrei K, Hanefeld M. Subclinical inflammation in newly detected Type II diabetes and impaired glucose tolerance. Diabetologia. 2002;45(1):151. doi:10.1007/s125-002-8256-1
Taaffe DR, Harris TB, Ferrucci L, Rowe J, Seeman TE. Cross-sectional and prospective relationships of interleukin-6 and C-reactive protein with physical performance in elderly persons: MacArthur studies of successful aging. J Gerontol A Biol Sci Med Sci. 2000;55(12):M709-M715. doi:10.1093/gerona/55.12.m709
Park SW, Goodpaster BH, Strotmeyer ES, et al. Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes. 2006;55(6):1813-1818. doi:10.2337/db05-1183
González-Rocha A, Mendez-Sanchez L, Ortíz-Rodríguez MA, Denova-Gutiérrez E. Effect Of Exercise on Muscle Mass, Fat Mass, Bone Mass, Muscular Strength and Physical Performance in Community Dwelling Older Adults: Systematic Review and Meta-Analysis. Aging Dis. 2022;13(5):1421-1435. Published 2022 Oct 1. doi:10.14336/AD.2022.0215
Jakicic JM, Powell KE, Campbell WW, et al. Physical Activity and the Prevention of Weight Gain in Adults: A Systematic Review. Med Sci Sports Exerc. 2019;51(6):1262-1269. doi:10.1249/MSS.0000000000001938
Kim T, Park SY, Oh IH. Exploring the Relationship between Physical Activities and Health-Related Factors in the Health-Related Quality of Life among People with Disability in Korea. Int J Environ Res Public Health. 2022;19(13):7839. Published 2022 Jun 26. doi:10.3390/ijerph19137839
Štursová P, Budinská X, Nováková Z, Dobšák P, Babula P. Sports activities and cardiovascular system change. Physiol Res. 2023;72(S5):S429-S444. doi:10.33549/physiolres.935238
Oja P, Titze S. Physical activity recommendations for public health: development and policy context. EPMA J. 2011;2(3):253-259. doi:10.1007/s13167-011-0090-1
Hou L, Liu Y, Li X, et al. Changes and Risk Factors of Skeletal Muscle Mass and Strength in Patients with Type 2 Diabetes over 60 Years Old: A Cross-Sectional Study from China. J Diabetes Res. 2020;2020:9815485. Published 2020 Sep 25. doi:10.1155/2020/9815485
Morrato EH, Hill JO, Wyatt HR, Ghushchyan V, Sullivan PW. Physical activity in U.S. adults with diabetes and at risk for developing diabetes, 2003. Diabetes Care. 2007;30(2):203-209. doi:10.2337/dc06-1128
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rafal Noga, Jagoda Marcinkowska, Marek Miśkiewicz, Jakub Ptak, Adrian Herc, Marcelina Sawczuk, Karolina Koczkodon, Victoria Teska, Jakub Perłowski, Mariusz Krompiewski
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 94
Number of citations: 0