Adaptogens - use, history and future
DOI:
https://doi.org/10.12775/QS.2023.09.01.002Keywords
phytoadaptogen, panax ginseng, rhodiola rosea, cytryniec chińskiAbstract
Adaptogens are synthetic compounds or plant extracts that have the ability to increase the body's efficiency in the presence of stress stimuli. Extracts from ginseng, Eleutherococcus senticosus, Rhaponticum carthamoides, roseroot and chinensis are the best known plant adaptogens. The aim of this work is to assess the use of plant adaptogens in the past and present, and to outline the prospects for their future use. The use of natural adaptogens by humans has a rich history - they are used to treat many diseases, improve memory or reduce the effects of stress. Half a century ago, plant adaptogens were first used in competitive sports due to their effect on increasing the body's resistance to stress and improving physical endurance. Although many people now take plant adaptogens, human clinical trials are still very limited. Information obtained while writing this paper indicates that plant adaptogens may provide a number of benefits in the treatment of chronic fatigue, cognitive dysfunction and immune diseases.
References
Wagner H., Nörr H., Winterhoff H. Plant adaptogens. Phytomedicine. 1994;1:63–76. doi: 10.1016/S0944-7113(11)80025-5. [PubMed] [CrossRef] [Google Scholar]
Panossian A., Wikman G., Wagner H. Plant adaptogens III. Earlier and more recent aspects and concepts on their mode of action. Phytomedicine. 1999;6:287–300. doi: 10.1016/S0944-7113(99)80023-3. [PubMed] [CrossRef] [Google Scholar]
Oliynyk S., Oh S.-K. The pharmacology of Actoprotectors: Practical application for improvement of mental and physical performance. Biomol. Ther. 2012;20:446–456. doi: 10.4062/biomolther.2012.20.5.446. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Panossian A.G., Efferth T., Shikov A.N., Pozharitskaya O.N., Kuchta K., Mukherjee P.K., Banerjee S., Heinrich M., Wu W., Guo D., et al. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress and aging related diseases. Med. Res. Rev. 2020;41:630–703. doi: 10.1002/med.21743. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
The World Anti-Doping Agency—WADA Executive Committee Approved the List of Prohibited Substances and Methods for 2009. [(accessed on 1 May 2021)]; Available online: https://www.wada-ama.org/en/media/news/2008-09/wada-executive-committee-approves-2009-prohibited-list-new-delhi-laboratory-0
The World Anti-Doping Agency—WADA Prohibited List. [(accessed on 1 May 2021)];2018 Available online: https://www.wada-ama.org/sites/default/files/prohibited_list_2018_en.pdf
Brekhman A.I., Dardymov I.V. New substances of plant origin which increase nonspecific resistance. Annu. Rev. Pharmacol. 1969;9:419–430. doi: 10.1146/annurev.pa.09.040169.002223. [PubMed] [CrossRef] [Google Scholar]
Kelly G.S. Rhodiola rosea: A possible plant adaptogen. Altern. Med. Rev. 2001;6:293–302. [PubMed] [Google Scholar]
Kamal M., Arif M., Jawaid T. Adaptogenic medicinal plants utilized for strengthening the power of resistance during chemotherapy—A review. Orient. Pharm. Exp. Med. 2017;17:1–18. doi: 10.1007/s13596-016-0254-6. [CrossRef] [Google Scholar]
Panossian A., Wikman G., Kaur P., Asea A. Adaptogens exert a stress-protective effect by modulation of expression of molecular chaperones. Phytomedicine. 2009;16:617–622. doi: 10.1016/j.phymed.2008.12.003. [PubMed] [CrossRef] [Google Scholar]
Pawar V.S., Shivakumar H. A current status of adaptogens: Natural remedy to stress. Asian Pac. J. Trop. Dis. 2012;2:S480–S490. doi: 10.1016/S2222-1808(12)60207-2. [CrossRef] [Google Scholar]
Li Z., He X., Liu F., Wang J., Feng J. A review of polysaccharides from Schisandra chinensis and Schisandra sphenanthera: Properties, functions and applications. Carbohydr. Polym. 2018;184:178–190. doi: 10.1016/j.carbpol.2017.12.058. [PubMed] [CrossRef] [Google Scholar]
Hikino H., Takahashi M., Otake K., Konno C. Isolation and Hypoglycemic Activity of Eleutherans A, B, C, D, E, F, and G: Glycans of Eleutherococcus senticosus Roots. J. Nat. Prod. 1986;49:293–297. doi: 10.1021/np50044a015. [PubMed] [CrossRef] [Google Scholar]
Kokoska L., Janovska D. Chemistry and pharmacology of Rhaponticum carthamoides: A review. Phytochemistry. 2009;70:842–855. doi: 10.1016/j.phytochem.2009.04.008. [PubMed] [CrossRef] [Google Scholar]
Panossian A. Understanding adaptogenic activity: Specificity of the pharmacological action of adaptogens and other phytochemicals. Ann. N. Y. Acad. Sci. 2017;1401:49–64. doi: 10.1111/nyas.13399. [PubMed] [CrossRef] [Google Scholar]
Mendes F.R., Carlini E. Brazilian plants as possible adaptogens: An ethnopharmacological survey of books edited in Brazil. J. Ethnopharmacol. 2007;109:493–500. doi: 10.1016/j.jep.2006.08.024. [PubMed] [CrossRef] [Google Scholar]
Ajala T.O. The effects of adaptogens on the physical and psychological symptoms of chronic stress. DISCOV. Ga. State Honor. Coll. Undergrad. Res. J. 2017;4:2. doi: 10.31922/disc4.2. [CrossRef] [Google Scholar]
Domene A.M. Effects of adaptogen supplementation on sport performance. A recent review of published studies. J. Hum. Sport Exerc. 2013;8:1054–1066. doi: 10.4100/jhse.2013.84.15. [CrossRef] [Google Scholar]
Krasutsky A.G., Cheremisinov V.N. The use of Levzey’s extract to increase the efficiency of the training process in fitness clubs students; Proceedings of the Actual Problems of Biochemistry and Bioenergy of Sport of the XXI Century; Moscow, Russia. 10–26 April 2017; pp. 382–388. [Google Scholar]
Aslanyan G., Amroyan E., Gabrielyan E., Nylander M., Wikman G., Panossian A. Double-blind, placebo-controlled, randomised study of single dose effects of ADAPT-232 on cognitive functions. Phytomedicine. 2010;17:494–499. doi: 10.1016/j.phymed.2010.02.005. [PubMed] [CrossRef] [Google Scholar]
Reay J.L., Scholey A., Kennedy D. Panax ginseng (G115) improves aspects of working memory performance and subjective ratings of calmness in healthy young adults. Hum. Psychopharmacol. Clin. Exp. 2010;25:462–471. doi: 10.1002/hup.1138. [PubMed] [CrossRef] [Google Scholar]
Page M.J., McKenzie J., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E., Brennan S., et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372:71. doi: 10.1136/bmj.n71. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Baeg I.-H., So S.-H. The world ginseng market and the ginseng (Korea) J. Ginseng Res. 2013;37:1–7. doi: 10.5142/jgr.2013.37.1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Kiefer D.S., Pantuso T. Panax ginseng. Am. Fam. Physician. 2003;68:1539–1542. [PubMed] [Google Scholar]
Patel S., Rauf A. Adaptogenic herb ginseng (Panax) as medical food: Status quo and future prospects. Biomed. Pharmacother. 2016;85:120–127. doi: 10.1016/j.biopha.2016.11.112. [PubMed] [CrossRef] [Google Scholar]
Shergis J., Zhang A.L., Zhou W., Xue C.C. Panax ginseng in randomised controlled trials: A systematic review. Phytother. Res. 2012;27:949–965. doi: 10.1002/ptr.4832. [PubMed] [CrossRef] [Google Scholar]
Nocerino E., Amato M., Izzo A. The aphrodisiac and adaptogenic properties of ginseng. Fitoterapia. 2000;71:S1–S5. doi: 10.1016/S0367-326X(00)00170-2. [PubMed] [CrossRef] [Google Scholar]
Mahady G.B., Gyllenhaal C., Fong H.H., Farnsworth N.R. Ginsengs: A review of safety and efficacy. Nutr. Clin. Care. 2000;3:90–101. doi: 10.1046/j.1523-5408.2000.00020.x. [CrossRef] [Google Scholar]
Wilson L. Review of adaptogenic mechanisms: Eleuthrococcus senticosus, panax ginseng, rhodiola rosea, schisandra chinensis and withania somnifera. Aust. J. Med. Herbal. 2007;19:126–138. doi: 10.3316/informit.406522201744304. [CrossRef] [Google Scholar]
Christensen L.P. Ginsenosides: Chemistry, biosynthesis, analysis, and potential health effects. Adv. Food Nutr. Res. 2008;55:1–99. doi: 10.1016/s1043-4526(08)00401-4. [PubMed] [CrossRef] [Google Scholar]
European Directorate for the Quality of Medicines & Health Care . European Pharmacopoeia, Monograph 07/2019:1523. European Directorate for the Quality of Medicines & Health Care; Strasburg, France: 2019. Ginseng radix. [Google Scholar]
Kim S.H., Park K.S. Effects of panax ginseng extract on lipid metabolism in humans. Pharmacol. Res. 2003;48:511–513. doi: 10.1016/S1043-6618(03)00189-0. [PubMed] [CrossRef] [Google Scholar]
Bhattacharjee I., Bandyopadhyay A. Effects of acute supplementation of panax ginseng on endurance performance in healthy adult males of Kolkata, India. Int. J. Clin. Exp. Physiol. 2020;7:63–68. doi: 10.5530/ijcep.2020.7.2.16. [CrossRef] [Google Scholar]
Etemadifar M., Sayahi F., Abtahi S.-H., Shemshaki H., Dorooshi G.-A., Goodarzi M., Akbari M., Fereidan-Esfahani M. Ginseng in the treatment of fatigue in multiple sclerosis: A randomized, placebo-controlled, double-blind pilot study. Int. J. Neurosci. 2013;123:480–486. doi: 10.3109/00207454.2013.764499. [PubMed] [CrossRef] [Google Scholar]
Engels H.-J., Said J.M., Wirth J.C. Failure of chronic ginseng supplementation to affect work performance and energy metabolism in healthy adult females. Nutr. Res. 1996;16:1295–1305. doi: 10.1016/0271-5317(96)00138-8. [CrossRef] [Google Scholar]
Perazzo F.F., Fonseca F.L., Souza G.H.B., Maistro E.L., Rodrigues M., Carvalho J.C. Double-blind clinical study of a multivitamin and polymineral complex associated with panax ginseng extract (Gerovital®) Open Complement. Med. J. 2010;2:100–104. [Google Scholar]
Ziemba A.W. The effect of ginseng supplementation on psychomotor performance, indices of physical capacity and plasma concentration of some hormones in young well fit men; Proceedings of the Ginseng Society Conference; Seoul, Korea. 1 October 2002; pp. 145–158. [Google Scholar]
Zarabi L., Arazi H., Izadi M. The effects of panax ginseng supplementation on growth hormone, cortisol and lactate response to high-intensity resistance exercise. Biomed. Hum. Kinet. 2018;10:8–14. doi: 10.1515/bhk-2018-0002. [CrossRef] [Google Scholar]
Lee S.A., Kang S.G., Lee H.J., Jung K.Y., Kim L. Effect of Korean red ginseng on sleep: A randomized, placebo-controlled Trial. Sleep Med. Psychophysiol. 2010;17:85–90. [Google Scholar]
Kim H.-G., Cho J.-H., Yoo S.-R., Lee J.-S., Han J.-M., Lee N.-H., Ahn Y.-C., Son C.-G. Antifatigue Effects of Panax ginseng CA Meyer: A randomised, double-blind, placebo-controlled trial. PLoS ONE. 2013;8:e61271. doi: 10.1371/journal.pone.0061271. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Ping F.W.C., Keong C.C., Bandyopadhyay A. Effects of acute supplementation of Panax ginseng on endurance running in a hot & humid environment. Indian J. Med. Res. 2011;133:96–102. [PMC free article] [PubMed] [Google Scholar]
Davydov M., Krikorian A. Eleutherococcus senticosus (Rupr. & Maxim.) maxim. (Araliaceae) as an adaptogen: A closer look. J. Ethnopharmacol. 2000;72:345–393. doi: 10.1016/s0378-8741(00)00181-1. [PubMed] [CrossRef] [Google Scholar]
World Health Organization . WHO Monographs on Selected Medicinal Plants. Volume 2 World Health Organization; Geneva, Switzerland: 2002. [Google Scholar]
Bleakney T.L. Deconstructing an adaptogen: Eleutherococcus Senticosus. Holist. Nurs. Pract. 2008;22:220–224. doi: 10.1097/01.HNP.0000326005.65310.7c. [PubMed] [CrossRef] [Google Scholar]
Jia A., Zhang Y., Gao H., Zhang Z., Zhang Y., Wang Z., Zhang J., Deng B., Qiu Z., Fu C. A review of Acanthopanax senticosus (Rupr and Maxim.) harms: From ethnopharmacological use to modern application. J. Ethnopharmacol. 2020;268:113586. doi: 10.1016/j.jep.2020.113586. [PubMed] [CrossRef] [Google Scholar]
Asano K., Takahashi T., Miyashita M., Matsuzaka A., Muramatsu S., Kuboyama M., Kugo H., Imai J. Effect of eleutheroccocus senticosus extract on human physical working capacity. Planta Med. 1986;52:175–177. doi: 10.1055/s-2007-969114. [PubMed] [CrossRef] [Google Scholar]
European Directorate for the Quality of Medicines & Health Care . European Pharmacopoeia, Monograph 01/2008:1419. European Directorate for the Quality of Medicines & Health Care; Strasburg, France: 2016. Eleutherococci radix. Corrected 7.0. [Google Scholar]
Dowling E.A., Redondo D.R., Branch J.D., Jones S., McNabb G., Williams M.H. Effect of Eleutherococcus senticosus on submaximal and maximal exercise performance. Med. Sci. Sports Exerc. 1996;28:482–489. doi: 10.1097/00005768-199604000-00013. [PubMed] [CrossRef] [Google Scholar]
Kuo J., Chen K.W., Cheng I.S., Tsai P.H., Lu Y.J., Lee N.Y. The effect of eight weeks of supplementation with Eleutherococcus senticosus on endurance capacity and metabolism in human. Chin. J. Physiol. 2010;53:105–111. doi: 10.4077/CJP.2010.AMK018. [PubMed] [CrossRef] [Google Scholar]
Cicero A., DeRosa G., Brillante R., Bernardi R., Nascetti S., Gaddi A. effects of siberian ginseng (eleutherococcus senticosus maxim.) on elderly quality of life: A randomized clinical trial. Arch. Gerontol. Geriatr. 2004;38:69–73. doi: 10.1016/j.archger.2004.04.012. [PubMed] [CrossRef] [Google Scholar]
Szołomicki S., Samochowiec L., Wójcicki J., Droździk M. The influence of active components of eleutherococcus senticosus on cellular defence and physical fitness in man. Phytother. Res. 2000;14:30–35. doi: 10.1002/(SICI)1099-1573(200002)14:1<30::AID-PTR543>3.0.CO;2-V. [PubMed] [CrossRef] [Google Scholar]
Schaffler K., Wolf O., Burkart M. No Benefit Adding Eleutherococcus senticosus to Stress Management Training in Stress-Related Fatigue/Weakness, Impaired Work or Concentration, A Randomized Controlled Study. Pharmacopsychiatry. 2013;46:181–190. doi: 10.1055/s-0033-1347178. [PubMed] [CrossRef] [Google Scholar]
Eschbach L.C., Webster M.J., Boyd J.C., McArthur P.D., Evetovich T.K. The Effect of Siberian Ginseng (Eleutherococcus Senticosus) on Substrate Utilization and Performance during Prolonged Cycling. Int. J. Sport Nutr. Exerc. Metab. 2000;10:444–451. doi: 10.1123/ijsnem.10.4.444. [PubMed] [CrossRef] [Google Scholar]
Krasutsky A.G., Cheremisinov V.N. Research of the influence of adaptogens on increasing the efficacy of the training process in fitness clubs; Proceedings of the Current Problems of Biochemistry and Bioenergy Sport of the XXI Centyry; Moscow, Russia. 10–12 April 2018; pp. 267–282. [Google Scholar]
Jacquet A., Grolleau A., Jove J., Lassalle R., Moore N. Burnout: Evaluation of the efficacy and tolerability of TARGET 1® for professional fatigue syndrome (burnout) J. Int. Med. Res. 2015;43:54–66. doi: 10.1177/0300060514558324. [PubMed] [CrossRef] [Google Scholar]
Buděšínský M., Vokáč K., Harmatha J., Cvačka J. Additional minor ecdysteroid components of Leuzea carthamoides. Steroids. 2008;73:502–514. doi: 10.1016/j.steroids.2007.12.021. [PubMed] [CrossRef] [Google Scholar]
Timofeev N.P. Leuzea Carthamoides DC: Application prospects as pharmpreparations and biologically active components. In: Martirosyan D.M., editor. Functional Foods for Chronic Diseases. Richardson; Texas, TX, USA: 2006. pp. 105–120. [Google Scholar]
Bathori M., Toth N., Hunyadi A., Marki A., Zador E. Phytoecdysteroids and anabolic-androgenic steroids—Structure and effects on humans. Curr. Med. Chem. 2008;15:75–91. doi: 10.2174/092986708783330674. [PubMed] [CrossRef] [Google Scholar]
Isenmann E., Ambrosio G., Joseph J.F., Mazzarino M., de la Torre X., Zimmer P., Kazlauskas R., Goebel C., Botrè F., Diel P., et al. Ecdysteroids as non-conventional anabolic agent: Performance enhancement by ecdysterone supplementation in humans. Arch. Toxicol. 2019;93:1807–1816. doi: 10.1007/s00204-019-02490-x. [PubMed] [CrossRef] [Google Scholar]
The World Anti-Doping Agency—WADA The 2020 Monitoring Program. [(accessed on 6 May 2021)]; Available online: https://www.wada-ama.org/sites/default/files/resources/files/wada_2020_english_monitoring_program_pdf
Vanyuk A.I. Evaluation of the effectivnness of rehabilitation measures among female volleyball players 18-22 years old in the competitive period of the annual training cycle. Slobozhanskiy Sci. Sports Visnik. 2012;5:95–98. [Google Scholar]
Timofeev N.P., Koksharov A.V. Study of Leuzea from leaves: Results of 15 years of trials in athletics. New Unconv. Plants Prospect. Use. 2016;12:502–505. [Google Scholar]
Wilborn C.D., Taylor L.W., Campbell B.I., Kerksick C., Rasmussen C.J., Greenwood M., Kreider R.B. Effects of Methoxyisoflavone, ecdysterone, and sulfo-polysaccharide supplementation on training adaptations in resistance-trained males. J. Int. Soc. Sports Nutr. 2006;3:19–27. doi: 10.1186/1550-2783-3-2-19. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Ryan E.D., Gerstner G.R., Mota J.A., Trexler E.T., Giuliani H.K., Blue M.N.M., Hirsch K.R., Smith-Ryan A.E. The acute effects of a multi-ingredient herbal supplement on performance fatigability: A double-blind, randomized, and placebo-controlled trial. J. Diet. Suppl. 2020:1–10. doi: 10.1080/19390211.2020.1790709. [PubMed] [CrossRef] [Google Scholar]
Selepcova L., Sommer A., Vargova M. Effect of feeding on a diet containing varying amounts of rhaponticum car-thamoides hay meal on selected morphological parameters in rats. Eur. J. Entornol. 2013;92:391–397. [Google Scholar]
Plotnikov M.B., Aliev O.I., Vasil’Ev A.S., Andreeva V.Y., Krasnov E.A., Kalinkina G.I. Effect of Rhaponticum carthamoides extract on structural and metabolic parameters of erythrocytes in rats with cerebral ischemia. Bull. Exp. Biol. Med. 2008;146:45–48. doi: 10.1007/s10517-008-0202-7. [PubMed] [CrossRef] [Google Scholar]
Wu J., Gao L., Shang L., Wang G., Wei N., Chu T., Chen S., Zhang Y., Huang J., Wang J., et al. Ecdysterones from Rhaponticum carthamoides (Willd.) Iljin reduce hippocampal excitotoxic cell loss and upregulate mTOR signaling in rats. Fitoter. 2017;119:158–167. doi: 10.1016/j.fitote.2017.03.015. [PubMed] [CrossRef] [Google Scholar]
Seidlova-Wuttke D., Ehrhardt C., Wuttke W. Metabolic effects of 20-OH-Ecdysone in ovariectomized rats. J. Steroid Biochem. Mol. Biol. 2010;119:121–126. doi: 10.1016/j.jsbmb.2010.01.006. [PubMed] [CrossRef] [Google Scholar]
Koudela K., Tenora J., Bajer J., Mathova A., Slama K. Stimulation of growth and development in Japanase quails after oral administration of ecdysteroid-containing diet. Eur. J. Entomol. 1995;92:349. [Google Scholar]
Sláma K., Koudela K., Tenora J., Maťhová A. Insect hormones in vertebrates: Anabolic effects of 20-hydroxyecdysone in Japanese quail. Experientia. 1996;52:702–706. doi: 10.1007/BF01925578. [PubMed] [CrossRef] [Google Scholar]
Xia X., Zhang Q., Liu R., Wang Z., Tang N., Liu F., Huang G., Jiang X., Gui G., Wang L., et al. Effects of 20-hydroxyecdysone on improving memory deficits in streptozotocin-induced type 1 diabetes mellitus in rat. Eur. J. Pharmacol. 2014;740:45–52. doi: 10.1016/j.ejphar.2014.06.026. [PubMed] [CrossRef] [Google Scholar]
Roumanille R., Vernus B., Brioche T., Descossy V., Van Ba C.T., Campredon S., Philippe A.G., Delobel P., Bertrand-Gaday C., Chopard A., et al. Acute and chronic effects of Rhaponticum carthamoides and Rhodiola rosea extracts supplementation coupled to resistance exercise on muscle protein synthesis and mechanical power in rats. J. Int. Soc. Sports Nutr. 2020;17:1–13. doi: 10.1186/s12970-020-00390-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Brown R.P., Gerbarg P.L., Ramazanov Z. Rhodiola rosea: A phytomedicinal overview. Herbal. Gram. 2002;56:40–52. [Google Scholar]
Pu W.-L., Zhang M.-Y., Bai R.-Y., Sun L.-K., Li W.-H., Yu Y.-L., Zhang Y., Song L., Wang Z.-X., Peng Y.-F., et al. Anti-inflammatory effects of Rhodiola rosea L.: A review. Biomed. Pharmacother. 2020;121:109552. doi: 10.1016/j.biopha.2019.109552. [PubMed] [CrossRef] [Google Scholar]
Khanum F., Bawa A.S., Singh B. Rhodiola rosea: A versatile adaptogen. Compr. Rev. Food Sci. Food Saf. 2005;4:55–62. doi: 10.1111/j.1541-4337.2005.tb00073.x. [PubMed] [CrossRef] [Google Scholar]
Panossian A., Seo E.-J., Efferth T. Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. Phytomedicine. 2018;50:257–284. doi: 10.1016/j.phymed.2018.09.204. [PubMed] [CrossRef] [Google Scholar]
Ballmann C.G., Maze S.B., Wells A.C., Marshall M.R., Rogers R.R. Effects of short-term Rhodiola Rosea (golden root extract) supplementation on anaerobic exercise performance. J. Sports Sci. 2019;37:998–1003. doi: 10.1080/02640414.2018.1538028. [PubMed] [CrossRef] [Google Scholar]
Jówko E., Sadowski J., Długołęcka B., Gierczuk D., Opaszowski B., Cieśliński I. Effects of Rhodiola rosea supplementation on mental performance, physical capacity, and oxidative stress biomarkers in healthy men. J. Sport Health Sci. 2018;7:473–480. doi: 10.1016/j.jshs.2016.05.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Abidov M., Grachev S., Seifulla R.D., Ziegenfuss T.N. Extract of Rhodiola rosea radix reduces the level of c-reactive protein and creatinine kinase in the blood. Bull. Exp. Biol. Med. 2004;138:63–64. doi: 10.1023/B:BEBM.0000046940.45382.53. [PubMed] [CrossRef] [Google Scholar]
Edwards D., Heufelder A., Zimmermann A. Therapeutic effects and safety of Rhodiola rosea extract WS® 1375 in subjects with life-stress symptoms—Results of an open-label study. Phytother. Res. 2012;26:1220–1225. doi: 10.1002/ptr.3712. [PubMed] [CrossRef] [Google Scholar]
Shevtsov V., Zholus B., Shervarly V., Vol’Skij V., Korovin Y., Khristich M., Roslyakova N., Wikman G. A randomized trial of two different doses of a SHR-5 Rhodiola rosea extract versus placebo and control of capacity for mental work. Phytomedicine. 2003;10:95–105. doi: 10.1078/094471103321659780. [PubMed] [CrossRef] [Google Scholar]
Darbinyan V., Aslanyan G., Amroyan E., Gabrielyan E., Malmström C., Panossian A. Clinical trial of Rhodiola rosea L. extract SHR-5 in the treatment of mild to moderate depression. Nord. J. Psychiatry. 2007;61:343–348. doi: 10.1080/08039480701643290. [PubMed] [CrossRef] [Google Scholar]
Shanely R.A., Nieman D.C., Zwetsloot K.A., Knab A.M., Imagita H., Luo B., Davis B., Zubeldia J.M. Evaluation of Rhodiola rosea supplementation on skeletal muscle damage and inflammation in runners following a competitive marathon. Brain Behav. Immun. 2013;39:204–210. doi: 10.1016/j.bbi.2013.09.005. [PubMed] [CrossRef] [Google Scholar]
Stejnborn A.S., Pilaczyńska-Szcześniak S., Basta P., Deskur-Śmielecka E. The influence of supplementation with Rhodiola rosea L. Extract on selected redox parameters in professional rowers. Int. J. Sport Nutr. Exerc. Metab. 2009;19:186–199. doi: 10.1123/ijsnem.19.2.186. [PubMed] [CrossRef] [Google Scholar]
Parisi A., Tranchita E., Duranti G., Ciminelli E., Quaranta F., Ceci R., Sabatini S. Effects of chronic Rhodiola Rosea sup-plementation on sport performance and antioxidant capacity in trained male: Preliminary results. J. Sports Med. Phys. Fit. 2010;50:57. [PubMed] [Google Scholar]
Bystritsky A., Kerwin L., Feusner J.D. A pilot study of Rhodiola rosea (Rhodax®) for generalized anxiety disorder (GAD) J. Altern. Complement. Med. 2008;14:175–180. doi: 10.1089/acm.2007.7117. [PubMed] [CrossRef] [Google Scholar]
Hancke J., Burgos R., Ahumada F. Schisandra chinensis (Turcz.) Baill. Fitoterapia. 1999;70:451–471. doi: 10.1016/S0367-326X(99)00102-1. [CrossRef] [Google Scholar]
Lu Y., Chen D.-F. Analysis of Schisandra chinensis and Schisandra sphenanthera. J. Chromatogr. A. 2009;1216:1980–1990. doi: 10.1016/j.chroma.2008.09.070. [PubMed] [CrossRef] [Google Scholar]
Panossian A., Wikman G. Pharmacology of Schisandra chinensis bail.: An overview of Russian research and uses in medicine. J. Ethnopharmacol. 2008;118:183–212. doi: 10.1016/j.jep.2008.04.020. [PubMed] [CrossRef] [Google Scholar]
Slanina J., Táborská E., Lojková L. Lignans in the seeds and fruits of Schisandra chinensis cultured in Europe. Planta Med. 1997;63:277–280. doi: 10.1055/s-2006-957676. [PubMed] [CrossRef] [Google Scholar]
European Directorate for the Quality of Medicines & Health Care . European Pharmacopoeia, Monograph 07/2016:2428. European Directorate for the Quality of Medicines & Health Care; Strasburg, France: 2016. Schisandrae chinensis fructus. Corrected 9.1, Corrected 7.0. [Google Scholar]
Szopa A., Barnaś M., Ekiert H. Phytochemical studies and biological activity of three Chinese Schisandra species (Schisandra sphenanthera, Schisandra henryi and Schisandra rubriflora): Current findings and future applications. Phytochem. Rev. 2019;18:109–128. doi: 10.1007/s11101-018-9582-0. [CrossRef] [Google Scholar]
Kochetkov N., Khorlin A., Chizhov O., Sheichenko V. Schizandrin—Lignan of unusual structure. Tetrahedron Lett. 1961;2:730–734. doi: 10.1016/S0040-4039(01)91684-3. [CrossRef] [Google Scholar]
Chen D.-F., Zhang S.-X., Kozuka M., Sun Q.-Z., Feng J., Wang Q., Mukainaka T., Nobukuni Y., Tokuda H., Nishino H., et al. Interiotherins C and D, two new lignans from Kadsurainteriorand antitumor-promoting effects of related neolignans on Epstein−Barr Virus Activation. J. Nat. Prod. 2002;65:1242–1245. doi: 10.1021/np0105127. [PubMed] [CrossRef] [Google Scholar]
Yoo H.H., Lee M., Lee M.W., Lim S.Y., Shin J., Kim D.-H. Effects of Schisandra lignans on P-Glycoprotein-mediated drug efflux in human intestinal Caco-2 Cells. Planta Med. 2007;73:444–450. doi: 10.1055/s-2007-967178. [PubMed] [CrossRef] [Google Scholar]
Fong W.-F., Wan C.-K., Zhu G.-Y., Chattopadhyay A., Dey S., Zhao Z., Shen X.-L. Schisandrol A from Schisandra chinensis reverses P-Glycoprotein-mediated multidrug resistance by affecting Pgp-substrate complexes. Planta Med. 2007;73:212–220. doi: 10.1055/s-2007-967120. [PubMed] [CrossRef] [Google Scholar]
Chen M., Kilgore N., Lee K.-H., Chen D.-F. Rubrisandrins A and B, lignans and related anti-HIV compounds from Schisandra rubriflora. J. Nat. Prod. 2006;69:1697–1701. doi: 10.1021/np060239e. [PubMed] [CrossRef] [Google Scholar]
Chen D.-F., Zhang S.-X., Xie L., Xie J.-X., Chen K., Kashiwada Y., Zhou B.-N., Wang P., Cosentino L., Lee K.-H. Anti-aids agents—XXVI. Structure-activity correlations of Gomisin-G-related anti-HIV lignans from Kadsura interior and of related synthetic analogues. Bioorganic Med. Chem. 1997;5:1715–1723. doi: 10.1016/S0968-0896(97)00118-1. [PubMed] [CrossRef] [Google Scholar]
Liu C., Zhang S., Zhang J., Liang Q., Li D. Chemical composition and antioxidant activity of essential oil from berries of Schisandra chinensis(Turcz.) Baill. Nat. Prod. Res. 2012;26:2199–2203. doi: 10.1080/14786419.2011.636745. [PubMed] [CrossRef] [Google Scholar]
Chen X., Zhang Y., Zu Y., Yang L. Chemical composition and antioxidant activity of the essential oil of Schisandra chinensisfruits. Nat. Prod. Res. 2012;26:842–849. doi: 10.1080/14786419.2011.558016. [PubMed] [CrossRef] [Google Scholar]
Xu M., Yan T., Gong G., Wu B., He B., Du Y., Xiao F., Jia Y. Purification, structural characterization, and cognitive improvement activity of a polysaccharides from Schisandra chinensis. Int. J. Biol. Macromol. 2020;163:497–507. doi: 10.1016/j.ijbiomac.2020.06.275. [PubMed] [CrossRef] [Google Scholar]
Liu Y., Guo J.-T., Wang Z.-B., Li Z.-Y., Zheng G.-X., Xia Y.-G., Yang B.-Y., Kuang H.-X. Aromatic monoterpenoid glycosides from rattan stems of Schisandra chinensis and their neuroprotective activities. Fitoterapia. 2019;134:108–112. doi: 10.1016/j.fitote.2019.02.012. [PubMed] [CrossRef] [Google Scholar]
Mocan A., Crișan G., Vlase L., Crișan O., Vodnar D.C., Raita O., Gheldiu A.-M., Toiu A., Oprean R., Tilea I. Comparative studies on polyphenolic composition, antioxidant and antimicrobial activities of schisandra chinensis leaves and fruits. Molecules. 2014;19:15162–15179. doi: 10.3390/molecules190915162. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Yang B.-Y., Guo J.-T., Li Z.-Y., Wang C.-F., Wang Z.-B., Wang Q.-H., Kuang H.-X. New Thymoquinol Glycosides and Neuroprotective Dibenzocyclooctane Lignans from the Rattan Stems ofSchisandra chinensis. Chem. Biodivers. 2016;13:1118–1125. doi: 10.1002/cbdv.201500311. [PubMed] [CrossRef] [Google Scholar]
Park J., Han S., Park H. Effect of Schisandra chinensis extract supplementation on quadriceps muscle strength and fatigue in adult women: A randomized, double-blind, placebo-controlled trial. Int. J. Environ. Res. Public Health. 2020;17:2475. doi: 10.3390/ijerph17072475. [PMC free article] [PubMed]
Park J.Y., Kim K.H. A randomized, double-blind, placebo-controlled trial of Schisandra chinensis for menopausal symptoms. Climacteric. 2016;19:574–580. doi: 10.1080/13697137.2016.1238453. [PubMed]
Song M.-Y., Wang J., Eom T., Kim H. Schisandra chinensis fruit modulates the gut microbiota composition in association with metabolic markers in obese women: A randomized, double-blind placebo-controlled study. Nutr. Res. 2015;35:655–663. doi: 10.1016/j.nutres.2015.05.001. [PubMed] [CrossRef] [Google Scholar]
Cao S., Shang H., Wu W., Du J., Putheti R. Evaluation of anti-athletic fatigue activity of Schizandra chinensis aqueous extracts in mice. Afr. J. Pharm. Pharmacol. 2009;3:593–597. [Google Scholar]
Li J., Wang J., Shao J.-Q., Du H., Wang Y.-T., Peng L. Effect of Schisandra chinensis on interleukins, glucose metabolism, and pituitary-adrenal and gonadal axis in rats under strenuous swimming exercise. Chin. J. Integr. Med. 2014;21:43–48. doi: 10.1007/s11655-014-1765-y. [PubMed]
Chen X., Cao J., Sun Y., Dai Y., Zhu J., Zhang X., Zhao X., Wang L., Zhao T., Li Y., et al. Ethanol extract of Schisandrae chinensis fructus ameliorates the extent of experimentally induced atherosclerosis in rats by increasing antioxidant capacity and improving endothelial dysfunction. Pharm. Biol. 2018;56:612–619. doi: 10.1080/13880209.2018.1523933. [PMC free article] [PubMed]
Sun J.-H., Liu X., Cong L.-X., Li H., Zhang C.-Y., Chen J.-G., Wang C.-M. Metabolomics study of the therapeutic mechanism of Schisandra chinensis lignans in diet-induced hyperlipidemia mice. Lipids Health Dis. 2017;16:227. doi: 10.1186/s12944-017-0533-3. [PMC free article] [PubMed]
Ip S.-P., Poon M., Wu S., Che C., Ng K., Kong Y., Ko K. Effect of Schisandrin B on hepatic glutathione antioxidant system in mice: Protection against carbon tetrachloride toxicity. Planta Med. 1995;61:398–401. doi: 10.1055/s-2006-958123. [PubMed]
Giridharan V.V., Thandavarayan R.A., Sato S., Ko K.M., Konishi T. Prevention of scopolamine-induced memory deficits by schisandrin B, an antioxidant lignan from Schisandra chinensis in mice. Free. Radic. Res. 2011;45:950–958. doi: 10.3109/10715762.2011.571682. [PubMed]
Kim K.-Y., Ku S.-K., Lee K.-W., Song C.-H., An W.G. Muscle-protective effects of Schisandrae fructus extracts in old mice after chronic forced exercise. J. Ethnopharmacol. 2018;212:175–187. doi: 10.1016/j.jep.2017.10.022. [PubMed]
Chen Y., Tang J., Wang X., Sun F., Liang S. An immunostimulatory polysaccharide (SCP-IIa) from the fruit of Schisandra chinensis (Turcz.) Baill. Int. J. Biol. Macromol. 2011;50:844–848. doi: 10.1016/j.ijbiomac.2011.11.015. [PubMed]
Zhao T., Mao G.-H., Zhang M., Li F., Zou Y., Zhou Y., Zheng W., Zheng D.-H., Yang L.-Q., Wu X.-Y. Anti-diabetic effects of polysaccharides from ethanol-insoluble residue of Schisandra chinensis (Turcz.) baill on alloxan-induced diabetic mice. Chem. Res. Chin. Univ. 2012;29:99–102. doi: 10.1007/s40242-012-2218-9. [CrossRef] [Google Scholar]
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Agnieszka Marciniak, Sylwia Nemeczek, Klaudia Walczak, Patrycja Walczak, Konrad Merkisz, Jakub Grzybowski, Natalia Grzywna, Karolina Jaskuła, Władysław Orłowski
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 1480
Number of citations: 0