Biological and anticancer activity of selected natural products
DOI:
https://doi.org/10.12775/MBS.2015.026Keywords
cancer, chemoprevention, natural agents, coffee, caffeic acid, CAPE, chlorogenic acid, quercetin, curcuminAbstract
Cancer continues to be one of the major causes of death worldwide. In recent years, the concept of cancer chemoprevention and treatment with natural occurring agents has evolved greatly. In this review work the biological activity and protective effects against cancer of some natural products - coffee, caffeic acid, caffeic acid phenethyl ester (CAPE), chlorogenic acid, quercetin and curcumin are presented. It seems that the most natural products with anticancer activity act as strong antioxidants and/or modify the activity of one or more protein kinases involved in cell cycle control. The results of in vitro and in vivo studies showed that some of them may be useful as potential chemotherapeutic or chemopreventive anticancer drugs or adjuvants in complex anticancer therapy.References
Teiten M-H., Dicato M., Diederich M. Hybrid Curcumin Compounds: A New Strategy for Cancer Treatment. Molecules 2014; 19: 20839-20863.
Wang J., Jiang Y-F. Natural compounds as anticancer agents: Experimental evidence. World J Exp. Med. 2012; 20: 45-57.
Zhang S. F., X-L. Wang, X-Q. Yang, N. Chen. Autophagy-associated Targeting Pathways of Natural Products during Cancer Treatment. Asian Pac. J Canc. Prevent. 2014; 15: 10557-10563.
Gordaliza M. Natural products as leads to anticancer drugs. Clin Transl Oncol. 2007; 9:767-776.
Newman D. J., Cragg G. M. Natural products as sources of new drugs over the last 25 years. J Nat Prod. 2007; 70:461-477.
Watanabe M. A. E., Amarante M. K., Conti B. J., Sforcin J. M. Cytotoxic constituents of propolis inducing anticancer effects: a review. J Pharm. Pharmacol. 2011; 63: 1378-1386.
Meiyanto E., Hermawan A., Anindyajati A. Natural products for cancer-targeted therapy: citrus flavonoids as potent chemopreventive agents. Asian Pac J Cancer Prev. 2012; 13: 427-36.
Kallifatidis G., Hoepfner D., Jaeg T., et al. The marine natural product manzamine A targets vacuolar ATPases and inhibits autophagy in pancreatic cancer cells. Mar Drugs. 2013; 11: 3500-16.
Kma L. Roles of plant extracts and constituents in cervical cancer therapy. Asian Pac J Cancer Prev. 2013; 14: 3429-3346.
Lachumy S. J., Oon C. E., Deivanai S., et al. Herbal remedies for combating irradiation: a green anti-irradiation approach. Asian Pac J Cancer Prev. 2013; 14: 5553-65.
Lao Y., Wan G., Liu Z., et al. The natural compound oblongifolin C inhibits autophagic flux and enhances antitumor efficacy of nutrient deprivation. Autophagy 2014; 10: 736-49.
Larocque K., Ovadje P., Djurdjevic S., et al. Novel analogue of colchicine induces selective pro-death autophagy and necrosis in human cancer cells. PLoS One. 2014: 9: 87064.
Zhong L. R., Chen X., Wei K. M. Radix tetrastigma hemsleyani flavone induces apoptosis in human lung carcinoma a549 cells by modulating the MAPK pathway. Asian Pac J Cancer Prev. 2013; 14: 5983-7.
Bøhn S. K., Blomhoff R., Paur I. Coffee and cancer risk, epidemiological evidence, and molecular mechanisms. Mol. Nutr. Food Res.2014; 58: 915–930.
Farah A. Coffee constituents. In Coffee: Emerging Health Effects and Disease Prevention, First Edition. Edited by Yi-Fang Chu. John Wiley & Sons, Inc. Published by Blackwell Publishing Ltd. 2012; 1: 21-58.
Yeretzian C., Jordan A., Lindinger W. Analysing the headspace of coffee by proton-transfer-reaction mass-spectrometry. Int. J. Mass Spectr.2003; 223–224: 115–139.
Clarke R. J. Coffee: green coffee/roast and ground. In:Encyclopedia of Food Science and Nutrition,2nd edition, Caballero, B., Trugo, L. C., Finglas, P., eds. Oxford: Academic Press; 2003; 3:345-349.
Barone J. J., Roberts H. R. Caffeine consumption. Food Chem. Toxicol.1996; 34: 119–129.
Urgert R., Katan M. B. The cholesterol-raising factor from coffee beans. Annu. Rev. Nutr.1997; 17: 305–324.
Mattila P., Hellstrom J., Torronen R. Phenolic acids in berries, fruits, and beverages. J. Agric. Food Chem. 2006; 54: 7193–7199.
Clifford M. N. Chlorogenic acids and other cinnamates—nature, occurrence and dietary burden. J. Sci. Food Agric.1999; 79: 362–372.
Bekedam E. K., Loots M. J., Schols H. A., Van Boekel M. A. et al. Roasting effects on formation mechanisms of coffee brew melanoidins.J. Agric. Food Chem.2008; 56: 7138–7145.
Lantz I., Ternite R., Wilkens J., Hoenicke K. et al. Studies on acrylamide levels in roasting, storage and brewing of coffee. Mol. Nutr. Food Res. 2006; 50: 1039–1046.
Lamoral-Theys D., Pottier L., Dufrasne F., Nève J., Dubois J., Kornienko A., Kiss R., Ingrassia L. Natural polyphenols that display anticancer properties through inhibition of kinase activity. Curr Med Chem. 2010;17: 812-25.
Paur I., Balstad T. R., Blomhoff R. Degree of roasting is the main determinant of the effects of coffee on NF-kappaB and EpRE. Free Radic. Biol. Med. 2010; 48: 1218-1227.
Somoza V. Five years of research on health risks and benefits of Maillard reaction products: an update. Mol. Nutr. Food Res. 2005; 49: 663-672.
Boettler U., Volz N., Pahlke G., Teller N. et al. Coffees rich in chlorogenic acid or N-methylpyridinium induce chemopreventive phase II-enzymes via the Nrf2/ARE pathwayinvitroandinvivo. Mol. Nutr. Food Res. 2011; 55: 798-802.
Kotyczka C., Boettler U., Lang R., Stiebitz H. et al. Dark roast coffee is more effective than light roast coffee in reducing body weight, and in restoring red blood cell vitamin E and glutathione concentrations in healthy volunteers. Mol. Nutr. Food Res. 2011: 55: 1582-1586.
Isshiki M., Ohta H., Tamura H., Coffee reduces SULT1E1 expression in human colon carcinoma Caco-2 cells.Biol. Pharm. Bull. 2013; 36: 299–304.
Del Pino-Garcia R., Gonzalez-San Jose M. L., Rivero-Perez M. D., Muniz P. Influence of the degree of roasting on the antioxidant capacity and genoprotective effect of instant coffee: contribution of the melanoidin fraction.J. Agric. Food Chem. 2012; 60: 10530–10539.
Simonsson M., Soderlind V., Henningson M., Hjertberg M. et al. Coffee prevents early events in tamoxifen-treated breast cancer patients and modulates hormone receptor status. Cancer Causes Control. 2013; 24: 929–940.
Lowcock E. C., Cotterchio M., Anderson L. N., Boucher B. A. et al. High coffee intake, but not caffeine, is associated with reduced estrogen receptor negative and postmenopausal breast cancer risk with no effect modification by CYP1A2 genotype.Nutr. Cancer. 2013; 65: 398–409.
Li X. J., Ren Z. J., Qin J. W., Zhao J. H. et al. Coffee consumption and risk of breast cancer: an up-to-date metaanalysis. PLoS One. 2013; 8: 52681- 52689.
Jiang W., Wu Y., Jiang X. Coffee and caffeine intake and breast cancer risk: an updated dose-response metaanalysis of 37 published studies.Gynecol. Oncol. 2013; 129: 620–629.
Wilson K. M., Kasperzyk J. L., Rider J. R., Kenfield S. et al. Coffee consumption and prostate cancer risk and progression in the Health Professionals Follow-up Study. J. Natl. Cancer Inst. 2011; 103: 876–884.
Wilson K. M., Balter K., Moller E., Adami H. O. et al. Coffee and risk of prostate cancer incidence and mortality In the Cancer of the Prostate in Sweden Study.Cancer Causes Control. 2013; 24: 1575–1581.
Wang Z. J., Ohnaka K., Morita M., Toyomura K. et al. Dietary polyphenols and colorectal cancer risk: the Fukuoka colorectal cancer study.World J. Gastroenterol. 2013; 19: 2683–2690.
Sugiyama K., Kuriyama S., Akhter M., Kakizaki M. et al. Coffee consumption and mortality due to all causes, cardiovascular disease, and cancer in Japanese women. J. Nutr. 2010; 140: 1007–1013.
Geybels M. S., Neuhouser M. L., Wright J. L., Stott Miller M. et al. Coffee and tea consumption in relation to prostate cancer prognosis.Cancer Causes Control. 2013; 24: 1947–1954.
Greenwald P. Clinical trials in cancer prevention: Current results and perspectives for the future. J. Nutr. 2004; 134: 3507–3512.
Huang M. T. Ferraro, T. Phenolic-compounds in food and cancer prevention. ACS Symp. Ser. 1992; 507: 8-34.
Magnani C., Isaac V. L. B., Correa M. A. Salgado H. R. N. Caffeic acid: A review of its potential use in medications and cosmetics. Anal. Methods UK .2014; 6: 3203–3210.
Búfalo M. C., Sforcin J. M. The modulatory effects of caffeic acid on human monocytes and its involvement in propolis action. J. Pharm. Pharmacol. 2015; 2: 1-6.
Abuzar E.,Rosline H., Zamzuri I., Zulkifli M., Nadiah W-A., Sulaiman S. A.,Siew H. G. Wan Zaidah A. Fibrinolytic Activity and Dose-Dependent Effect of Incubating Human Blood Clots in Caffeic Acid Phenethyl Ester: In VitroAssays. BioMed Research Intern. 2015; 2: 1-10.
Gebhard C., St ahli B. E., Largiad` S. and et al. Caffeic acid phenethyl ester inhibits endothelial tissue factor expression. Biol. Pharm. Bull. 2013; 36: 1032–1035.
Bankova V. Chemical diversity of propolis makes it a valuable source of new biologically active compounds. J. ApiProduct and ApiMedical Science. 2009; 1: 23–28.
Kumazawa S., Ahn M. R., Fujimoto T., Kato M. Radicalscavenging activity and phenolic constituents of propolis from different regions of Argentina. Nat. Prod. Res. 2010; 9: 804–812.
Chen H. C., Chen J. H., Chang C., Shieh C. J. Optimization of ultrasound-accelerated synthesis of enzymatic caffeic acid phenethyl ester by response surface methodology. Ultrason. Sonochem. 2011; 18: 455–459.
Chen H. C., Ju H. Y., Twu Y. K. et al. Optimized enzymatic synthesis of caffeic acid phenethyl ester by RSM. New Biotechnol. 2010; 27: 89–93.
Kurata A., Kitamura Y., Irieetal S. Enzymaticsynthesisof caffeic acid phenethyl ester analogues in ionic liquid. J Biotechnol. 2010; 148: 133–138.
Wang X., Stavchansky S., Bowman P. D., Kerwin S. M. Cytoprotective effect of caffeic acid phenethyl ester (CAPE) and catechol ring-fluorinated CAPE derivatives against menadione-induced oxidative stress in human endothelial cells. Bioor. Med. Chem. 2006; 14: 4879–4887.
Tolba M. F., Azab S. S., Khalifa A. E., Abdel-Rahman S. Z., Abdel-Naim A. B. Caffeic Acid Phenethyl Ester, a Promising Component of Propolis with a Plethora of Biological Activities: A Review on its Anti-inflammatory, Neuroprotective, Hepatoprotective, and Cardioprotective Effects. Intern. Un. Biochem. Molec. Biol. 2013; 65: 699–709.
Murtaza G., Karim S., Rouf Akram M., Ali Khan S., Azhar S., Bin Asad A. M. Caffeic Acid Phenethyl Ester and Therapeutic Potentials. BioMed Res. Internat. 2014; 4: 1-9.
Hui-Ping L., Ching-Yu L., Chiech H., Liang-Cheng S., Chuu S. Anticancer Effect of Caffeic Acid Phenethyl Ester. Pharmacologia. 2012; 3: 26-30.
Ozturk G., Ginis Z., Akyol S., Erden G., Gurel A., Akyol O. The anticancer mechanism of caffeic acid phenethyl ester (CAPE): review of melanomas, lung and prostate cancers. Eur. Rev. Med. Pharmacol. Scien. 2012; 16: 2064-2068.
Liu J. H., Qiu A. Y. Chlorogenic acid extraction and purification and application prospects. Cereals & Oils. 2003; 9: 44–446.
Dorrell D. G. Chlorogenic acid content of meal from cultivatial sunflower. Crop Science. 1976; 16: 422–426.
Shimizu M., Yoshimi N., Yamada Y. et al. Suppressive effects of chlorogenic acid on N-methyl-N-nitrosourea- induced glandular stomach carcinogenesis in male F344 rats. J. Toxicol. Scien. 1999; 24: 433-439.
Matsunaga K., Katayama M., Sakata K., et al. Inhibitory effects of chlorogenic acid on azoxymethane- induced colon carcinogenesis in male F344 rats. Asian Pac. J. Canc. Preven. 2002: 3: 163–166.
Kurata R., Adachi M., Yamakawa O., Yoshimoto M. Growth suppression of human cancer cells by polyphenolics from sweetpotato (Ipomoea batatas L.) leaves. J. Agricul. Food Chem. 2007: 55: 185–190, 2007.
Rylova S. N., Amalfitano A., Persaud-Sawin D. A., et al. The CLN3 gene is a novel molecular target for cancer drug Discovery. Cancer Res. 2002: 62: 801–808.
Pereira R. C., Delany A. M., Canalis E. CCAAT/enhancer binding protein homologous protein (DDIT3) induces osteoblastic cell differentiation. Endocrinology. 2004; 145: 1952–1960.
Pellati F., Benvenuti S., Magro L., Melegari M., Soragni F. Analysis of phenolic compounds and radical scavenging activity of Echinacea spp. J. Pharm. Biomed. Anal. 2004; 35: 289–301.
Zhang H., Zhang M., Yu L., Zhao Y., He N., Yang X. Antitumor activities of quercetin and quercetin-5’,8-disulfonate in human colon and breast cancer cell lines. Food Chem. Toxicol. 2012; 50: 1589-1599.
Gibellini L., Pinti M., Nasi M., Montagna J. P., De Biasi S., Roat E., Bertoncelli L., Cooper E. L., Cossarizza A. Quercetin and Cancer. Chemoprevention. 2011; 1: 1-15.
Joshi U. J., Gadge A. S., D’Mello P., Sinha R., Srivastava S., Govil G. Anti-inflammatory, antioxidant and anticancer activity of Quercetin and its analogu es. Intern. J Res. Pharm. Biomedical Scien. 2011, 4: 1756-1766.
Sreelatha S., Jeyachitra A., Padma P. R. Antiproliferation and induction of apoptosis byMoringa oleiferaleaf extract on human cancer cells. Food Chem. Toxicol. 2011; 49: 1270–1275.
Suh D. K., Lee E. J., Kim H. C., Kim J. H. Induction of G1/S phase arrest and apoptosis by quercetin in human osteosarcoma cells. Arch. Pharm. Res. 2010; 33: 781–785.
Aggarwal B. B., Bhatt I. D., Ichikawa H., Ahn K. S., Sethi G., Sandur S. K., Sundaram C. Seeram N., Shishodia S. Curcumin: Biological and medicinal properties, In Turmeric: The Genus Curcuma; CRC Press: New york, NY, USA. 2007; 45: 297–368.
Hatcher H., Planalp R., Cho J., Torti F. M., Torti S.V. Curcumin: From ancient medicine to current clinical trials. Cell. Mol. Life Sci. 2008; 65: 1631–1652.
Teiten M. H. Eifes S., Dicato M., Diederich M. Curcumin-the paradigm of a multi-target natural compound with applications in cancer prevention and treatment. Toxins (Basel). 2010; 2: 128–162.
Teiten M. H. Gaigneaux A., Chateauvieux S., Billing A. M., Planchon S., Fack F., Renaut J., Mack F., Muller C. P., Dicato, M. et al.Identification of differentially expressed proteins in curcumin-treated prostate cancer cell lines. Omics. 2012; 16: 289–300.
Goel A., Kunnumakkara A. B., Aggarwal B. B. Curcumin as “curecumin”: From kitchen to clinic. Biochem. Pharmacol. 2008; 75: 787–809.
Reddy A. R., Dinesh P., Prabhakar A.S., Umasankar K., Shireesha B., Raju M. B. A comprehensive review on sar of curcumin. Mini Rev. Med. Chem. 2013; 13: 1769–1777.
Priyadarsini K. I. Chemical and structural featuresinfluencing the biological activity of curcumin. Curr. Pharm. Des. 2013; 19: 2093–2100.
Jitoe-Masuda A., Fujimoto A., Masuda T. Curcumin: From chemistry to chemistry-based functions. Curr. Pharm. Des. 2013; 19: 2084–2092.
Teiten M., Dicato M., Diederich M. Hybrid Curcumin Compounds: A New Strategy for Cancer Treatment. Molecules. 2014; 19: 20839-20863.
Aggarwal B. B., Kumar A., Bharti A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res. 2003; 23: 363–398.
Chaturvedi M. M. Sung B., Yadav V. R., Kannappan R., Aggarwal B. B. NF-κB addiction and its role in cancer: one size does not fit all. Oncogene. 2001; 30: 1615–1630.
Aggarwal B. B., Shishodia S. Molecular targets ofdietary agents for prevention and therapy of cancer. Biochem. Pharmacol. 2006; 71: 1397–1421.
Aggarwal B. B. Prostate cancer and curcumin. Cancer Biol. Ther. 2008; 7: 1436–1440.
Teiten M.-H.; Gaascht F., Eifes S., Dicato M., Diederich M. Chemopreventive potential of curcumin in prostate cancer. Genes Nutr. 2010; 5: 61–74.
Shishodia S., Sethi G., Aggarwal B. B. Curcumin: Getting back to the roots. Ann. N. Y. Acad. Sci. 2005; 1056: 206–217.
Anand P., Kunnumakkara A. B., Newman R. A. Aggarwal, B.B. Bio-availability of curcumin: Problems and promises. Mol. Pharmacol. 2007; 4: 807–818.
Ohtsu H., Xiao Z., Ishida J., Nagai M., Wang H., Itokawa H. S., Shih C., Chiang T., Chang E., Lee Y. et al. Antitumor agents. 217. Curcumin analogues as novel androgen receptor antagonists with potential as anti-prostate cancer agent. J. Med. Chem. 2002; 45: 5037–5042.
Liang G., Shao L., Wang Y., Zhao C., Chu Y., Xiao J., Zhao Y., Li X., Yang S. Exploration and synthesis of curcumin analogues with improved structural stability bothin vitroandin vivoas cytotoxic agents. Bioorg. Med. Chem. 2009; 17: 2623–2631.
Lin L., Shi Q., Su C.Y., Shih C.C., Lee K.-H. Antitumor agents 247. New 4-ethoxycarbonylehtyl curcumin analogs as potential antiandrogenic agents. Bioorg. Med. Chem. 2006; 14: 2527–2534.
Lin L., Shi Q., Nyarko A. K., Bastow K. F., Wu C. C., Su C. Y., Shih C. C., Lee K.-H. Antitumor agents 250. Design and synthesis of new curcumin analogues as potential anti-prostate cancer agents. J. Med. Chem. 2006; 49: 3963–3972.
Lin L., Hutzen B., Ball S., Foust E., Sobo M., Deangelis S., Pandit B., Friedman L., Li C., Li P. K. et al. New curcumin analogues exhibit enhancedgrowth-suppressive activity and inhibit AKT and signal transducer and activator of transcription 3 phosphorylation on breast and prostate cancer cells. J. Cancer Sci. Ther. 2009; 100: 1719–1727.
Wei, X.; Zhou, D.; Wang, H.; Ding, N.; Cui, X-X.; Wang, H.; Verano, M.; Zhang, K.; Conney, A.; Zheng, X.; et al. Effects of pyridine analogs of curcumin on growth, apoptosis and NF-κβactivity in prostate cancer PC-3 cells. Anticancer Res. 2013; 33: 1343–1350.
Itokawa, H., Shi Q., Akiyama T., Morris-Natschke S. L., Lee K-H. Recent advances in the investigation of curcuminoids. Chin. Med. Sci. J. 2008; 3: 11.
Lee K.-H. Discovery and development of natural product-derived chemotherapeutic agents based on a medicinal chemistry approach. J. Nat. Prod. 2010; 73: 500–516.
Fuchs J. R., Pandit B., Bhasin D., Etter J. P., Regan N., Abdelhamid D., Li C., Lin J., Li P. K. Structure-activity relationship studies of curcumin analogues. Bioorg. Med. Chem. Lett. 2009; 19: 2065–2069.
Ishida J., Ohtsu H., Tachibana Y., Nakanishi Y., Bastow K. F., Nagai M., Wang H., Itokawa H., Lee K.-H. Antitumor agents. Part 214: Synthesis and evaluation of curcumin analogues as cytotoxic agents. Bioorg. Med. Chem. 2002; 10: 3481–3487.
Shi Q., Shih C. C., Lee K-H. Novel anti-prostate cancer curcumin analogues that enhance androgen receptor degradation activity. Anticanc. Agent. Med. Chem. 2009; 9: 904–912.
Kumar A. P., Varcia G. E., Ghosh R., Fajnarayanan R.V., Alworth W. L., Slaga T. J. 4-Hydrocy-3-methoxybenzoic acid methyl ester: A curcumin derivative targets Akt/NF kappa B cell survival signalling pathway. Potential for prostate cancer management. Neoplasia 2003; 5: 255–266.
Shi Q., Wada K., Ohloshi E., Lin L., Huang R. Morris-Natschke S.L., Goto M., Lee K.-H. Antitumor agents 290. Design, synthesis and biological evaluation ofnew LNCap and PC-3 cytotoxic curcumin analogs conjugated with anti-androgens. Bioorg. Med. Chem. 2012; 20: 4020–4031.
Valentini, A.; Conforti, F.; de Martino, A.; Condello, R.; Stellitano, C.; Rotilio, G.; Ghedini, M.; Federici, G.; Bernardini, S.; Pucci, D. Synthesis, oxidant properties and antitumoral effects of heteroleptic palladium (II) complex of curcumin on human prostate cancer cells. J. Med. Chem. 2009; 52: 484–491.
Kamini C., Faridah A., Lajis N. H., Othman I., Naidu R.. Anti-Proliferative Effect and Induction of Apoptosis in Androgen-Independent Human Prostate Cancer Cells by 1,5-Bis(2-hydroxyphenyl)-1,4-pentadiene-3-one. Mole-cules 2015; 20: 3406-3430.
Colic M., Pavelic K. Molecular mechanisms of anticancer activity of natural dietetic products. J. Mol. Med. 2000; 78: 333–336.
Archer S. Y., Hodin R. A. Histone acetylation and cancer. Curr Opin Genet Dev. 1999; 9:171-174.
Weinstein J. N., et al. An information-intensive approach to the molecular pharmacology of cancer. Science 1997; 275: 343-349.
Downloads
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 543
Number of citations: 0