Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

A Syntactical Analysis of Lewis’s Triviality Result
  • Home
  • /
  • A Syntactical Analysis of Lewis’s Triviality Result
  1. Home /
  2. Archives /
  3. Vol. 30 No. 3 (2021): September /
  4. Articles

A Syntactical Analysis of Lewis’s Triviality Result

Authors

  • Claudio E. A. Pizzi University of Siena

DOI:

https://doi.org/10.12775/LLP.2021.006

Keywords

conditionals, conditional probability, Stalnaker’s Thesis, triviality, collapse of modalities

Abstract

The first part of the paper contains a probabilistic axiomatic extension of the conditional system WV, here named WVPr. This system is extended with the axiom (Pr4): PrA = 1 ⊃ □A. The resulting system, named WVPr∗, is proved to be consistent and non-trivial, in the sense that it does not contain the wff (Triv): A ≡□A. Extending WVPr∗ with the so-called Generalized Stalnaker’s Thesis (GST) yields the (first) Lewis’s Triviality Result (LTriv) in the form (◊(A ∧ B) ∧◊(A ∧ ¬B)) ⊃ PrB|A = PrB. In §4 it is shown that a consequence of this theorem is the thesis (CT1): ¬A ⊃ (A > B ⊃ A ⥽ B). It is then proven that (CT1) subjoined to the conditional system WVPr∗ yields the collapse formula (Triv). The final result is that WVPr∗+(GST) is equivalent to WVPr∗+(Triv). In the last section a discussion is opened about the intuitive and philosophical plausibility of axiom (Pr4) and its role in the derivation of (Triv).

Author Biography

Claudio E. A. Pizzi, University of Siena

Emeritus

References

Bradley, R., and N. Swartz, 1979, Possible Worlds. An Introduction to Logic and its Philosophy, Blackwell.

Eagle, A., 2005, “Probability, modality and triviality”. Internet Resource: http://fitelson.org/few//few_05/eagle.pdf

Fattorosi-Barnaba, M., and G. Amati, 1987, “Modal operators with probabilistic interpretations”, Studia Logica 46 (4): 383–393. DOI: https://doi.org/10.1007/BF00370648

Holliday,W., and T. Icard, 2014, “Modal probability logic”. Internet Resource: https://philosophy.berkeley.edu/file/922/lecture4part2.pdf and http://web.stanford.edu/~icard/esslli2014/lecture2.pdf

Kratzer, A., 2012, Modals and Conditionals, Oxford University Press.

Lewis, D.K., 1973, Counterfactuals, Blackwell.

Lewis, D.K., 1986, “Probabilities of conditionals and conditional probabilities”, The Philosophical Review 85 (3): 297–315. DOI: https://doi.org/10.2307/2184045

Maksimović, P., 1983, “Development and verification of probability logics and logical frameworks”, Université Nice Sophia Antipolis, 2013. https://tel.archives-ouvertes.fr/tel-00907854/file/2013NICE4074.pdf

Montanaro, A., and A. Bressan, 1981, “Contributions to foundations of Probability Calculus on the basis of the Modal Logical Calculus MCν or MCν∗, Rendiconti del Seminario Matematico della Università di Padova 64: 109–126.

Nute, D., 1981, Topics in Conditional Logic, Reidel.

Ognjanović, Z., M. Rašković and Z. Marković, 2009, Probability Logics, Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade. Also: Probability Logics. Probability-Based Formalization of Uncertain Reasoning, Springer, 2016. DOI: https://doi.org/10.1007/978-3-319-47012-2

Pizzi, C.E., 1990, “Stalnaker-Lewis conditionals: Three grades of holistic involvment”, Logique et Analyse 33 (31): 311–329.

Pizzi, C.E., 2020, “Explicit conditionals in the framework of classical conditional logic”, Logic and Logical Philosophy 29 (2): 161–187. DOI: https://doi.org/10.12775/LLP.2019.030

Rescher, N., 1963, “A probabilistic approach to modal logic”, Acta Philosophica Fennica 16: 215–226.

Stalnaker, R.C., 1968, “A theory of conditionals”, pages 98–112 in N. Rescher (ed.), Studies in Logical Theory, Blackwell 1968.

Stalnaker, R.C., 1970, “Probability and conditionals”, Philosophy of Science 37 (1), 64-80. DOI: https://doi.org/10.1086/288280

Stalnaker, R.C., 1976, “Letter by Stalnaker to van Fraassen”, pages 302–306 in W.L. Harper and C.A. Hooker (eds.), Foundations of Probability Theory, Statistical Inference and Statistical Theories of Science, vol. I, Dordrecht: D. Reider Publishing Company.

Veltman, F., 1976, “Prejudices, presuppositions and the theory of conditionals”, pages 248–281 in J. Groenendijk and M. Stokhof (eds.), Amsterdam Papers in Formal Grammar, Vol. 1, Universiteit van Amsterdam: Centrale Interfaculteit.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2021-03-24

How to Cite

1.
PIZZI, Claudio E. A. A Syntactical Analysis of Lewis’s Triviality Result. Logic and Logical Philosophy [online]. 24 March 2021, T. 30, nr 3, s. 417–434. [accessed 1.4.2023]. DOI 10.12775/LLP.2021.006.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 30 No. 3 (2021): September

Section

Articles

Stats

Number of views and downloads: 564
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

conditionals, conditional probability, Stalnaker’s Thesis, triviality, collapse of modalities
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop