Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Dialogue Games for Minimal Logic
  • Home
  • /
  • Dialogue Games for Minimal Logic
  1. Home /
  2. Archives /
  3. Vol. 30 No. 2 (2021): June /
  4. Articles

Dialogue Games for Minimal Logic

Authors

  • Alexandra Pavlova National Research University Higher School of Economics, Russian Federation https://orcid.org/0000-0002-1877-1167

DOI:

https://doi.org/10.12775/LLP.2020.022

Keywords

dialogue logic, sequent calculi, minimal logic

Abstract

In this paper, we define a class of dialogue games for Johansson’s minimal logic and prove that it corresponds to the validity of minimal logic. Many authors have stated similar results for intuitionistic and classical logic either with or without actually proving the correspondence. Rahman, Clerbout and Keiff [17] have already specified dialogues for minimal logic; however, they transformed it into Fitch-style natural deduction only. We propose a different specification for minimal logic with the proof of correspondence between the existence of winning strategies for the Proponent in this class of games and the sequent calculus for minimal logic.

Author Biography

Alexandra Pavlova, National Research University Higher School of Economics, Russian Federation

International Laboratory for Logic, Linguistics and Formal Philosophy

References

Alama. J., A. Knoks and S.L. Uckelman, “Dialogue games for classical logic”, pages 82–86 in M. Giese and R. Kuznets (eds.), TABLEAUX 2011: Workshops, Tutorials, and Short Papers, 2011.

Alama, J., and S.L. Uckelman, “What is dialogical about dialogical logic?”, pages 207–222 in H.J. Ribeiro (ed.), Inside Arguments: Logic and the Study of Argumentation, Newcastle: Cambridge Scholars Publication, 2012.

Clerbout, N., “First-order dialogical games and tableaux”, Journal of Philosophical Logic 43, 4 (2014): 785–801. DOI: http://dx.doi.org/10.1007/s10992-013-9289-z

Clerbout, N., “Finiteness of plays and dialogical problem of decidability”, IfCoLog Journal of Logics and their Applications 1, 1 (2014): 115–130.

Felscher, W., “Dialogues, strategies, and intuitionistic provability”, Annals of Pure and Applied Logic 28 (1985): 217–254. DOI: http://dx.doi.org/10.1016/0168-0072(85)90016-8

Fermüller, C.G., “Parallel dialogue games and hypersequents for intermediate logics”, pages 48–64 in M.C. Mayer and F. Pirri (eds.), TABLEAUX 2003 Automated Reasoning with Analytic Tableaux and Related Methods, 2003. DOI: http://dx.doi.org/10.1007/978-3-540-45206-5_7

Gentzen, G., and K. Erich, “Untersuchungen über das logische Schließen. I”, Mathematische Zeitschrift 39, 2 (1934): 176–210.

Gentzen, G., and Karl Erich, “Untersuchungen über das logische Schließen. II”, Mathematische Zeitschrift 39, 3 (1935): 405–431.

Hintikka, J., The Principles of Mathematics Revisited, Cambridge: Cambridge University Press, 1996. DOI: http://dx.doi.org/10.1017/CBO9780511624919

Johansson, I., “Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus”, Compositio Mathematica 4 (1937): 119–136.

Kleene, S.C., Introduction to Metamathematics, the Netherlands, 1952.

Krabbe, E.C.W.. “Dialogue logic”, pages 665–704 in D.M. Gabbay and J. Woods (eds.), Handbook of the History of Logic, Vol. 7, New York: Elsevier, 2006. DOI: http://dx.doi.org/10.1016/S1874-5857(06)80035-X

Lorenzen, P., and K. Lorenz, Dialogische Logik, Wissenschaftlische Buchgesellschaft, Darmstadt, 1978.

Pavlova, A.M., “Truth in dialogue logic and game-theoretical semantics (GTS)”, Logical Investigations 21, 2 (2015): 107–133.

Naibo, A., and P. Mattia, “Are uniqueness and deducibility of identical the same?”, Theoria 81, 2 (2015): 143–181. DOI: http://dx.doi.org/10.1111/theo.12051

Rahman, S., and W.A. Carnielli, “The dialogical approach to paraconsistency”, Synthese 125 (2000): 201–232. DOI: http://dx.doi.org/10.1023/A:1005294523930

Rahman, S., N. Clerbout, and L. Keiff, “On dialogues and natural deduction”, pages 301–355 in G. Primeiro and S. Rahman (eds.), Acts of Knowledge: History, Philosophy and Logic, London: College Publications, 2009.

Rahman, S., and T. Tulenheimo, “From games to dialogues and back: Towards a general frame for validity”, in Games: Unifying logic, Language and Philosophy, Springer, 2009. DOI: http://dx.doi.org/10.1007/978-1-4020-9374-6_8

Sørensen, M.H., and P. Urzyczyn, “Sequent calculus, dialogues, and cut elimination”, pages 253–261 in Reflections on Type Theory, λ-Calculus, and the Mind, Universiteit Nijmegen, 2007.

Troelstra, A.S., and H. Schwichtenberg, Basic Proof Theory, 2nd edn, Cambridge University Press, 2000. DOI: http://dx.doi.org/10.1017/CBO9781139168717

Logic and Logical Philosophy

Downloads

  • PDF

Published

2020-11-10

How to Cite

1.
PAVLOVA, Alexandra. Dialogue Games for Minimal Logic. Logic and Logical Philosophy. Online. 10 November 2020. Vol. 30, no. 2, pp. 281-309. [Accessed 28 September 2023]. DOI 10.12775/LLP.2020.022.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 30 No. 2 (2021): June

Section

Articles

Stats

Number of views and downloads: 426
Number of citations: 1

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

dialogue logic, sequent calculi, minimal logic
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop