Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

ω-Circularity of Yablo's Paradox
  • Home
  • /
  • ω-Circularity of Yablo's Paradox
  1. Home /
  2. Archives /
  3. Vol. 29 No. 3 (2020): September /
  4. Articles

ω-Circularity of Yablo's Paradox

Authors

  • Ahmet Çevik Gendarmerie and Coast Guard Academy, and Department of Mathematics, Middle East Technical University, Ankara https://orcid.org/0000-0002-5578-1225

DOI:

https://doi.org/10.12775/LLP.2019.032

Keywords

self-reference, Yablo's paradox, ω-circularity, ω-inconsistent theories, impredicativity

Abstract

In this paper, we strengthen Hardy’s [1995] and Ketland’s [2005] arguments on the issues surrounding the self-referential nature of Yablo’s paradox [1993]. We first begin by observing that Priest’s [1997] construction of the binary satisfaction relation in revealing a fixed point relies on impredicative definitions. We then show that Yablo’s paradox is ‘ω-circular’, based on ω-inconsistent theories, by arguing that the paradox is not self-referential in the classical sense but rather admits circularity at the least transfinite countable ordinal. Hence, we both strengthen arguments for the ω-inconsistency of Yablo’s paradox and present a compromise solution of the problem emerged from Yablo’s and Priest’s conflicting theses.

References

Beall, J.C., 2001, “Is Yablo’s paradox non-circular?”, Analysis 61 (3): 176–187. DOI: http://dx.doi.org/10.1093/analys/61.3.176

Beringer, T., and T. Schindler, 2017, “A graph-theoretic analysis of the semantic paradoxes”, Bulletin of Symbolic Logic 23 (4): 442–492. DOI: http://dx.doi.org/10.1017/bsl.2017.37

Cohen, P., 1966, Set Theory and the Continuum Hypothesis, W.A. Benjamin, Inc., New York.

Cook, R.T., 2006, “There are non-circular paradoxes (But Yablo’s isn’t one of them!)”, The Monist 89: 118–149.

Feferman, S., 2005, “Predicativity”, pages 590-624 in S. Shapiro (ed.), The Oxford Handbook of Philosophy of Mathematics and Logic, Oxford: Oxford University Press. DOI: http://dx.doi.org/10.1093/0195148770.003.0019

Hardy, J., 1995, “Is Yablo’s paradox liar-like?”, Analysis 55 (3): 197–198. DOI: http://dx.doi.org/10.1093/analys/55.3.197

Ketland, J., 2005, “Yablo’s paradox and w -inconsistency”, Synthese 145 (3):

–302. DOI: http://dx.doi.org/10.1007/s11229-005-6201-6

Priest, G., 1997, “Yablo’s paradox”, Analysis, 57 (4): 236–242. DOI: http://dx.doi.org/10.1093/analys/57.4.236

Sorensen, R., 1998, “Yablo’s paradox and Kindered infinite liars”, Mind 107 (425): 137–156. DOI: http://dx.doi.org/10.1093/mind/107.425.137

Visser, A., 1989, “Semantics and the liar paradox”, pages 617–706, chapter 10, in Handbook of Philosophical Logic, vol. 4, Synthese Library (Studies in Epistemology, Logic, Methodology, and Philosophy of Science), vol. 167, Springer, Dordrecht. DOI: http://dx.doi.org/10.1007/978-94-009-1171-0_10

Yablo, S., 1993, “Paradox without self-reference”, Analysis 53 (4): 251–252. DOI: http://dx.doi.org/10.1093/analys/53.4.251

Logic and Logical Philosophy

Downloads

  • PDF

Published

2019-08-30

How to Cite

1.
ÇEVIK, Ahmet. ω-Circularity of Yablo’s Paradox. Logic and Logical Philosophy. Online. 30 August 2019. Vol. 29, no. 3, pp. 325-333. [Accessed 1 July 2025]. DOI 10.12775/LLP.2019.032.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 29 No. 3 (2020): September

Section

Articles

Stats

Number of views and downloads: 809
Number of citations: 1

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

self-reference, Yablo's paradox, ω-circularity, ω-inconsistent theories, impredicativity
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop