Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Explicit Conditionals in the Framework of Classical Conditional Logic
  • Home
  • /
  • Explicit Conditionals in the Framework of Classical Conditional Logic
  1. Home /
  2. Archives /
  3. Vol. 29 No. 2 (2020): June /
  4. Articles

Explicit Conditionals in the Framework of Classical Conditional Logic

Authors

  • Claudio E. A. Pizzi University of Siena

DOI:

https://doi.org/10.12775/LLP.2019.030

Keywords

indicative conditionals, counterfactual conditionals, modality, transitivity of conditionals, centering condition

Abstract

The paper proposes a first approach to systems whose language includes two primitives (>+ and >-) as symbols for factual and counterfactual conditionals which are explicit, i.e. that are stated jointly with the truth or falsity of the antecedent clause. In systems based on this language, here called 2-conditional, the standard corner operator may be defined by (Def>) A > B := (A >+ B)∨(A >- B), while in classical conditional systems one could introduce the two symbols for explicit conditionals by the definitions (Def>+) A >+ B := A∧(A>B) and (Def>-) A>- B := ¬A∧(A>B). Two 2-conditional systems, V² and VW², are axiomatized and proved to be definitionally equivalent to the monoconditional systems V and VW. A third system VWTr² is characterized by an axiom stating the transitivity of factual conditionals and is shown to be distinct from V², from VW² and from the 2-conditional version of Lewis’ well-known system VC, here named VC². The same may be said for a fourth system VW²◊ ±, based on an axiom inderivable in VC²: ◊(A >+ B) ⊃ ◊( ¬A >- ¬B). VC² contains what is here called a “semi-collapse” of the operator >+ and it is argued that it is inadequate as a logic for both factual and counterfactual conditionals. The last section shows that several different definitions of the corner operators in terms of >+ and >- may be introduced as an alternative to (Def>).

Author Biography

Claudio E. A. Pizzi, University of Siena

Emeritus

References

Arlò-Costa, I., 2007, “The logic of conditionals”, in Stanford Encyclopedia of Philosophy, https://plato.stanford.edu/entries/logicconditionals/.

Corcoran, John, 1993, “Meanings of implication”, Dialogos 9, 1973: 59–76.

Reprinted in R. Hughes (ed.), Philosophical Companion to First Order Logic, Indianapolis: Hackett, 1993.

Edgington, D., 2014, “Indicative conditionals” in Stanford Encyclopedia of Philosophy, https://plato.stanford.edu/entries/conditionals/.

Goodman, N., 1947, “The problem of counterfactual conditionals”, Journal of Philosophy 44: 113–128.

Gundersen, L., 2004, “Outline of a new semantics for counterfactuals”, Pacific Philosophical Quarterly 85 (1): 1–20. DOI: http://dx.doi.org/10.1111/j.1468-0114.2004.00184.x

Lewis, D.K., 1971, “Completeness and decidability of three logics of counterfactual conditionals”, Theoria 37: 74–85

Lewis, D.K., 1973, Counterfactuals, Oxford: Blackwell.

Nute, D., 1980, Topics in Conditional Logic, Dordrecht: Reidel. DOI: http://dx.doi.org/10.1007/978-94-009-8966-5

Pizzi, C., 1980, “‘Since’, ‘Even if’, ‘As if’”, pages 73–87, chapter 6, in M.L. Dalla Chiara (ed.), Italian Studies in the Philosophy of Science, Studies in the Philosophy of Science, vol. 47, Reidel, Dordrecht. DOI: http://dx.doi.org/10.1007/978-94-009-8937-5_6

Pizzi, C., 2013, “Counterfactuals and Modus Tollens in abductive arguments”, Logic Journal of the IGPL 21 (6): 962–979. DOI: http://dx.doi.org/10.1093/jigpal/jzt014

Pollock, J.L., 1975, “Four kinds of conditionals”, American Philosophical Quarterly 1: 51–59.

von Kutschera, F., 1974, “Indicative conditionals”, Theoretical Linguistics 1 (1–3): 257–269. DOI: http://dx.doi.org/10.1515/thli.1974.1.1-3.257

von Kutschera, F., 1974, “Indicative conditionals”, Theoretical Linguistics 1 (1–3): 257–269. DOI: http://dx.doi.org/10.1515/thli.1974.1.1-3.257

Logic and Logical Philosophy

Downloads

  • PDF

Published

2019-07-15

How to Cite

1.
PIZZI, Claudio E. A. Explicit Conditionals in the Framework of Classical Conditional Logic. Logic and Logical Philosophy. Online. 15 July 2019. Vol. 29, no. 2, pp. 161-187. [Accessed 4 July 2025]. DOI 10.12775/LLP.2019.030.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 29 No. 2 (2020): June

Section

Articles

Stats

Number of views and downloads: 758
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

indicative conditionals, counterfactual conditionals, modality, transitivity of conditionals, centering condition
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop