Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Syntactic Proofs for Yablo’s Paradoxes in Temporal Logic
  • Home
  • /
  • Syntactic Proofs for Yablo’s Paradoxes in Temporal Logic
  1. Home /
  2. Archives /
  3. Vol. 28 No. 4 (2019): December /
  4. Articles

Syntactic Proofs for Yablo’s Paradoxes in Temporal Logic

Authors

  • Ahmad Karimi Behbahan Khatam Alanbia University of Technology, Department of Mathematics

DOI:

https://doi.org/10.12775/LLP.2019.020

Keywords

non-self-referential paradox, Yablo’s paradox, linear temporal logic, syntactic proofs

Abstract

Temporal logic is of importance in theoretical computer science for its application in formal verification, to state requirements of hardware or software systems. Linear temporal logic is an appropriate logical environment to formalize Yablo’s paradox which is seemingly non-self-referential and basically has a sequential structure. We give a brief review of Yablo’s paradox and its various versions. Formalization of these paradoxes yields some theorems in Linear Temporal Logic (LTL) for which we give syntactic proofs using an appropriate axiomatization of LTL.

References

Barrio, E.A., 2010, “Theories of truth without standard models and Yablo’s sequences”, Studia Logica 96 (3): 375–391. DOI: http://dx.doi.org/10.1007/s11225-010-9289-8

Barrio, E.A., and B. Da Ré, 2018, “Truth without standard models: Some conceptual problems reloaded”, Journal of Applied Non-Classical Logics 28 (1): 122–139. DOI: http://dx.doi.org/10.1080/11663081.2017.1397326

Barrio, E.A., and L. Picollo, 2013, “Notes on w -inconsistent theories of truth in second-order languages”, The Review of Symbolic Logic 6 (4): 733–741. DOI: http://dx.doi.org/10.1017/S1755020313000269

Beall, J.C., 2001, “Is Yablo’s paradox non-circular?”, Analysis 61 (3): 176–187. DOI: http://dx.doi.org/10.1093/analys/61.3.176

Brandenburger, A., and H.J. Keisler, 2006, “An impossibility theorem on beliefs in games”, Studia Logica 84 (2): 211–240. DOI: http://dx.doi.org/10.1007/s11225-006-9011-z

Bringsjord, S., and B. van Heuveln, 2003, “The ‘mental eye’ defence of an infinitized version of Yablo’s paradox”, Analysis 63 (1): 61–70. DOI: http://dx.doi.org/10.1093/analys/63.1.61

Bueno, O., and M. Colyvan, 2003a, “Yablo’s paradox and referring to infinite objects”, Australasian Journal of Philosophy 81 (3): 402–412. DOI: http://dx.doi.org/10.1080/713659707

Bueno, O., and M. Colyvan, 2003b, “Paradox without satisfaction”, Analysis 63 (2), 152–156. DOI: http://dx.doi.org/10.1093/analys/63.2.152

Cieśliński, C., 2013, “Yablo sequences in truth theories”, pages 127–138 in K. Lodaya (ed.), Indian Conference on Logic and Its Applications, Springer, Berlin, Heidelberg. DOI: http://dx.doi.org/10.1007/978-3-642-36039-8_12

Cieśliński, C., and R. Urbaniak, 2013, “Gödelizing the Yablo sequence”, Journal of Philosophical Logic 42: 679–695. DOI: http://dx.doi.org/10.1007/s10992-012-9244-4

Forster, T., and R. Goré, 2016, “Yablo’s paradox as a theorem of modal logic”, Logique et Analyse 59 (253): 283–300.

Karimi, A., 2017, “A non-self-referential paradox in epistemic game theory”, Reports on Mathematical Logic 52: 45–56. DOI: http://dx.doi.org/10.4467/20842589RM.17.002.7140

Karimi, A., and S. Salehi, 2014, “Theoremizing Yablo’s paradox”, Preprint arXiv:1406.0134.

Karimi, A., and S. Salehi, 2017, “Diagonal arguments and fixed points”, Bulletin of the Iranian Mathematical Society 43 (5): 1073–1088.

Ketland, J., 2004, “Bueno and Colyvan on Yablo’s paradox”, Analysis 64 (2): 165–172. DOI: http://dx.doi.org/10.1093/analys/64.2.165

Ketland, J., 2005, “Yablo’s Paradox and w -Inconsistency”, Synthese 145 (3): 295–302. DOI: http://dx.doi.org/10.1007/s11229-005-6201-6

Kröger, F., and S. Merz, 2008, “Temporal logic and state systems”, Springer.

Leach-Krouse, G., 2014, “Yablifying the Rosser sentence”, Journal of Philosophical Logic 43 (5): 827–834. DOI: http://dx.doi.org/10.1007/s10992-013-9291-5

Luna, L., 2009, “Yablo’s paradox and beginningless time”, Disputatio 3 (26): 1–8. DOI: http://dx.doi.org/10.2478/disp-2009-0002

Picollo, L.M., 2013, “Yablo’s paradox in second-order languages: Consistency and unsatisfiability”, Studia Logica 101 (3): 601–617. DOI: http://dx.doi.org/10.1007/s11225-012-9399-6

Pnueli, A., 1977, “The temporal logic of programs”, pages 46–57 in 18th Annual Symposium on Foundations of Computer Science (SFCS’77) IEEE Computer Society. DOI: http://dx.doi.org/10.1109/SFCS.1977.32

Priest, G., 1997, “Yablo’s paradox”, Analysis 57 (4): 236–242. DOI: http://dx.doi.org/10.1093/analys/57.4.236

Sorensen, R.A. 1998, “Yablo’s paradox and kindred infinite liars”, Mind 107 (425): 137–155. DOI: http://dx.doi.org/10.1093/mind/107.425.137

Yablo, S., 1985, “Truth and reflection”, Journal of Philosophical Logic 14: 297–349. DOI: http://dx.doi.org/10.1007/BF00249368

Yablo, S., 1993, “Paradox without self-reference’, Analysis 53: 251–252. DOI: http://dx.doi.org/10.1093/analys/53.4.251

Yablo, S., 2004, “Circularity and paradox”, pages 139–157 in T. Bolander, V.F. Hendricks and S.A. Pedersen (eds.), Self-Reference CSLI Publications. http://www.mit.edu/~yablo/circularity&paradox.pdf

Yatabe, S., 2011, “Yablo-like paradoxes and co-induction”, pages 90–103, chapter 8, in Y. Onada, D. Bekki and E. McCready (eds.), New Frontiers in Artificial Intelligence, JSAI-isAI 2010, vol. 6797 of Lecture Notes in Computer Science, Springer. DOI: http://dx.doi.org/10.1007/978-3-642-25655-4_8

Logic and Logical Philosophy

Downloads

  • PDF

Published

2019-06-14

How to Cite

1.
KARIMI, Ahmad. Syntactic Proofs for Yablo’s Paradoxes in Temporal Logic. Logic and Logical Philosophy. Online. 14 June 2019. Vol. 28, no. 4, pp. 753-765. [Accessed 10 November 2025]. DOI 10.12775/LLP.2019.020.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 28 No. 4 (2019): December

Section

Articles

Stats

Number of views and downloads: 893
Number of citations: 1

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

non-self-referential paradox, Yablo’s paradox, linear temporal logic, syntactic proofs
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop