Towards Contingent World Descriptions in Description Logics
DOI:
https://doi.org/10.12775/LLP.2019.016Keywords
conditional information, contingent interpretation, contingent world description, description logics, functional contingents, knowledge representation, modality, three-valued semanticsAbstract
The philosophical, logical, and terminological junctions between Description Logics (DLs) and Modal Logic (ML) are important because they can support the formal analysis of modal notions of ‘possibility’ and ‘necessity’ through the lens of DLs. This paper introduces functional contingents in order to (i) structurally and terminologically analyse ‘functional possibility’ and ‘functional necessity’ in DL world descriptions and (ii) logically and terminologically annotate DL world descriptions based on functional contingents. The most significant contributions of this research are the logical characterisation and terminological analysis of functional contingents in DL world descriptions. The ultimate goal is to investigate how modal operators can – logically and terminologically – be expressed within DL world descriptions.
References
Mohamed Nazih Omri Amen Ajroud, Salem Benferhat and Habib Youssef, “On the use of guaranteed possibility measures in possibilistic networks”, in H.C. Lane and H.W. Guesgen (eds.), Proceedings of the Twenty-Second International FLAIRS Conference, Florida, AAAI Press.
Franz Baader et al., The Description Logic Handbook: Theory, Implementation and Applications, Cambridge University Press, New York, 2nd edition, 2010.
Carsten Lutz Franz Baader, Ian Horrocks and Ulrike Sattler, An Introduction to Description Logic, Cambridge University Press, 2017. DOI: http://dx.doi.org/10.1017/9781139025355
Carsten Lutz Franz Baader, Ian Horrocks and Ulrike Sattler, “Introduction”, pages 1–9 in [3]. DOI: http://dx.doi.org/10.1017/9781139025355.001
Carsten Lutz Franz Baader, Ian Horrocks and Ulrike Sattler, “A basic description logic”, pages 10–49 in [3] DOI: http://dx.doi.org/10.1017/9781139025355.002
Carsten Lutz Franz Baader, Ian Horrocks and Ulrike Sattler, “Description logic terminology”, pages 228–233 in [3]. DOI: http://dx.doi.org/10.1017/9781139025355.009
Safia Bal-Bourai and Aïcha Mokhtari, “Poss-owl 2: Possibilistic extension of owl 2 for an uncertain geographic ontology”, pages 407–416 in P. Jedrzejowicz et al. (ed.), 18th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems – KES 2014, Procedia Computer Science, Elsevier, 2014. DOI: http://dx.doi.org/10.1016/j.procs.2014.08.121
Safia Bal-Bourai and Aïcha Mokhtari, “π-sroiq(d): Possibilistic description logic for uncertain geographic information”, pages 818–829 in H. Fujita et al. (eds.), IEA/AIE 2016: Trends in Applied Knowledge-Based Systems and Data Science, vol. 9799 of Lecture Notes in Computer Science, Springer, 2016. DOI: http://dx.doi.org/10.1007/978-3-319-42007-3_69
Laurent Mouchard Pierre Vera Benoit Lelandais, Isabelle Gardin and Su Ruan, “Using belief function theory to deal with uncertainties and imprecisions in image processing”, pages 197–204 in T. Denoeux and M.-H. Masson (eds.), Belief Functions: Theory and Applications, Advances in Intelligent and Soft Computing, Springer, Berlin, Heidelberg, 2012. DOI: http://dx.doi.org/10.1007/978-3-642-29461-7_23
Patrick Blackburn et al. (eds.), Handbook of Modal Logic, vol. 3 of Studies in Logic and Practical Reasoning, Elsevier Science, 2006.
Miguel Delgado Fernando Bobillo and Juan Gómez Romero, “Crisp representations and reasoning for fuzzy ontologies”, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 17, 4 (2009): 501–530. DOI: http://dx.doi.org/10.1142/s0218488509006121
Fernando Bobillo and Umberto Straccia, “Reasoning with the finitely many-valued Łukasiewicz fuzzy description logic sroiq”, Information Sciences 181 4 (2011): 758–778. DOI: http://dx.doi.org/10.1016/j.ins.2010.10.020
Alex Borgida, “On the relationship between description logic and predicate logic queries”, pages 219–225 in Proceedings of the Third International Conference on Information and Knowledge Management, CIKM ’94, New York, 1994. DOI: http://dx.doi.org/10.1145/191246.191283
Ronald J. Brachman and Hector J. Levesque, Readings in Knowledge Representation, Morgan Kaufmann Pub, 1985.
Romano Scozzafava Giulianella Coletti and Barbara Vantaggi, “Possibility measures in probabilistic inference”, pages 51–58 in Soft Methods for Handling Variability and Imprecision, Advances in Soft Computing, Springer, Berlin, Heidelberg, 2008. DOI: http://dx.doi.org/10.1007/978-3-540-85027-4_7
Abdelkarim Ben Ayed Fatma Dammak, Leila Baccour and Adel M. Alimi, “Electre method using interval-valued intuitionistic fuzzy sets and possibility theory for multi-criteria decision making problem resolution”, pages 1–6 in 2017 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE), 2017. DOI: http://dx.doi.org/10.1109/FUZZ-IEEE.2017.8015408
Jean Dezert and Jean-Marc Tacnet, “Sigmoidal model for belief functionbased electre tri method”, pages 401–408 in T. Denoeux and M.-H. Masson (eds.), Belief Functions: Theory and Applications, Advances in Intelligent and Soft Computing, Springer, Berlin, Heidelberg, 2012. DOI: http://dx.doi.org/10.1007/978-3-642-29461-7_47
Francesco M. Donini, Martin Buchheit and Andrea Schaerf, “Decidable reasoning in terminological knowledge representation systems”, in Computing Research Repository (CoRR), 1993. DOI: http://dx.doi.org/10.1613/jair.21
Isabela Neves Drummond, “Imprecise data classification based on fuzzy logic and possibility theory”, PhD thesis, National Institute for Space Research, São José dos Campos, Brazil, 2007.
Henri Prade Didier Dubois and Agnes Rico, “Representing qualitative capacities as families of possibility measures”, International Journal of Approximate Reasoning 58, C (2015): 3–24. DOI: http://dx.doi.org/10.1016/j.ijar.201411.005
Jérôme Mengin Didier Dubois and Henri Prade, “Possibilistic uncertainty and fuzzy features in description logic: a preliminary discussion”, 2006. DOI: http://dx.doi.org/10.1016/S1574-9576(06)80008-0
Didier Dubois, “Fuzzy measures on finite scales as families of possibility measures” pages 822–829 in S. Galichet et al. (eds.), Proceedings of the 7th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-11), Advances in Intelligent Systems Research, Aix-les-Bains, Atlantis Press, 2011.
Didier Dubois and Henri Prade, “Updating with belief functions, ordinal conditioning functions and possibility measures”, Computing Research Repository (CoRR). http://arxiv.org/abs/1304.1118
J. Gallagher and P.M. Hill, ``Meta-programming in logic programming”, pages 421–497, Oxford Science Publications, Oxford University Press, 1994.
James Garson, “Modal logic”, The Stanford Encyclopedia of Philosophy, 2014.
Sergio Alejandro Gómez, “Reasoning with inconsistent possibilistic description logics ontologies with disjunctive assertions”, in ISTEC RedUNCI (ed.), XXI Argentinian Conference of Computer Science (CACIC 2015), Buenos Aires, 2015.
Sergio Alejandro Gómez, “Reasoning with inconsistent possibilistic ontologies by applying argument accrual”, Journal of Computer Science and Technology 17, 2 (2017): 117–126. DOI: http://dx.doi.org/10.24215/16666038.17.e16
Bernhard Hollunder, “An alternative proof method for possibilistic logic and its application to terminological logics”, International Journal of Approximate Reasoning 12 (1994): 85–109. DOI: http://dx.doi.org/10.1016/0888-613X(94)00015-U
Kosuke Kato, Takeshi Uno and Hideki Katagiri, “A stackelberg location with fuzzy random demands based upon possibility and necessity measures”, International Journal of Knowledge Engineering and Soft Data Paradigms (2014): 249–260. DOI: http://dx.doi.org/10.1504/IJKESDP.2014.064263
Pavel Klinov and Bijan Parsia, “Understanding a probabilistic description logic via connections to first-order logic of probability”, pages 41–58 in Fernando Bobillo et al. (eds.), Uncertainty Reasoning for the Semantic Web, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2013. DOI: http://dx.doi.org/10.1007/978-3-642-35975-0_3
Oliver Kutz, Ian Horrocks and Ulrike Sattler, “The even more irresistible sroiq”, pages 57–67 in Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning 2006, Lake District, AAAI Press, 2006.
Ioan A. Letia and Adrian Groza, “Modelling imprecise arguments in description logic”, pages 94–99 in Advances in Electrical and Computer Engineering, 2009. DOI: http://dx.doi.org/10.4316/AECE.2009.03017
H.J. Levesque and R.J. Brachman, A Fundamental Tradeoff in Knowledge Representation and Reasoning, Readings in Knowledge Representation, Morgan Kaufmann, 1985.
Jun Li, Tao Chen, Radko Mesiar and Andrea Stupnanova, “Possibility and necessity measures and integral equivalence”, International Journal of Approximate Reasoning (2017): 62–72. DOI: http://dx.doi.org/10.1016/j.ijar.2017.04.008
Yongming Li, “Quantitative model checking of linear-time properties based on generalized possibility measures”, Fuzzy Sets and Systems (2017): 17–39. DOI: http://dx.doi.org/10.1016/j.fss.2017.03.012
Sebastian Link and Henri Prade, “Possibilistic functional dependencies and their relationship to possibility theory”, IEEE Transactions on Fuzzy Systems 24, 3 (2016): 757–763. DOI: http://dx.doi.org/10.1109/TFUZZ.2015.2466074
Thomas Lukasiewicz, “Expressive probabilistic description logics”, Artificial Intelligence 172. 6–7 (2008): 852–883. DOI: http://dx.doi.org/10.1016/j.artint.2007.10.017
Andrzej Matuszewski and Mieczyslaw A. Klopotek, “What does a belief function believe in?”, Computing Research Repository (CoRR) (2017). http://arxiv.org/abs/1706.02686
John-Jules Ch. Meyer, “Modal epistemic and doxastic logic”, Handbook of Philosophical Logic, vol. 10, 2003. DOI: http://dx.doi.org/10.1007/978-94-017-4524-6_1
Marvin Minsky, “A framework for representing knowledge”, Technical Report 306, MIT-AI Laboratory, 1974.
Aïcha Mokhtari, Safia Bal-Bourai and Faiza Khellaf, “Poss-sroiq(d): Possibilistic description logic extension toward an uncertain geographic ontology”, pages 277–286 in B. Catania et al. (eds.), New Trends in Databases and Information Systems, vol. 241 of Advances in Intelligent Systems and Computing, Springer, 2013. DOI: http://dx.doi.org/10.1007/978-3-319-01863-8_30
Daniele Nardi and Ronald J. Brachman, An Introduction to Description Logics, pages 1–42. Cambridge University Press, New York, 2010.
D. Nardi, W. Nutt, F.M. Donini, M. Lenzerini and A. Schaerf, “An epistemic operator for description logics”, Artificial Intelligence 100, 1 (1998): 225–274. DOI: http://dx.doi.org/10.1016/S0004-3702(98)00009-5
Jeff Z. Pan, Guilin Qi and Qiu Ji, “A possibilistic extension of description logics”, in D. Calvanese et al. (eds.), In Proceedings of DL’07, vol. 250 of CEUR Workshop Proceedings, CEUR-WS.org, 2007.
Jeff Z. Pan, Guilin Qi and Qiu Ji, “Extending description logics with uncertainty reasoning in possibilistic logic”, pages 828–839 in K. Mellouli (ed.), ECSQARU 2007: Symbolic and Quantitative Approaches to Reasoning with Uncertainty, vol. 4724 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2007. DOI: http://dx.doi.org/10.1007/978-3-540-75256-1_72
Jeff Z. Pan, Guilin Qi, Qiu Ji and Jianfeng Du, International Journal of Intelligent Systems 26, 4 (2011): 353–381. DOI: http://dx.doi.org/10.1002/int.20470
Ross Quillian, “Semantic memory”, pages 216–270 in Semantic Information Processing, MIT Press, 1968.
Sebastian Rudolph, “Foundations of description logics”, in In Reasoning Web, volume 6848 of LNCS, 2011. DOI: http://dx.doi.org/10.1007/978-3-642-23032-5_2
Jose L. Ruiz and Inmaculada Sirvent, Fuzzy Optimization and Decision Making, 2017.
Enrique H. Ruspini, “Possibility as similarity: The semantics of fuzzy logic”, Computing Research Repository (CoRR), abs/1304.1115 (2013). http://arxiv.org/abs/1304.1115
Klaus Schild, “A correspondence theory for terminological logics: Preliminary report”, pages 101–104 in IJCAI’91 Proceedings of the 12th International Joint Conference on Artificial intelligence, vol. 1, San Francisco, CA, 1991.
Manfred Schmidt-Schaulss and Gert Smolka, “Attributive concept descriptions with complements”, in Artificial Intelligence Elsevier, 1991.
Krister Segerberg, “Default logic as dynamic doxastic logic”, Erkenntnis 50, 2–3 (1999): 333–352. DOI: http://dx.doi.org/10.1023/A:1005546526502
Glenn Shafer, “Belief function and possibility measures”, The Analysis of Fuzzy Information 1 (1987): 51–84.
Glenn Shafer, “Belief functions and parametric models”, pages 265–290 in R.R. Yager and L. Liu (eds.), Classic Works of the Dempster-Shafer Theory of Belief Functions, Studies in Fuzziness and Soft Computing, Springer, Berlin, Heidelberg, 2008. DOI: http://dx.doi.org/10.1007/978-3-540-44792-4_10
Leslie F. Sikos, Description Logics in Multimedia Reasoning, Springer International Publishing, 2017. DOI: http://dx.doi.org/10.1007/978-3-319-54066-5
Umberto Straccia, “Managing uncertainty and vagueness in description logics, logic programs and description logic programs”, in Reasoning Web, Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 2008. DOI: http://dx.doi.org/10.1007/978-3-540-85658-0_2
Umberto Straccia, Foundations of Fuzzy Logic and Semantic Web Languages, Chapman & Hall/CRC, 2013.
Matthias C.M. Troffaes, Enrique Miranda and Sebastien Destercke, “On the connection between probability boxes and possibility measures”, Information Sciences (2013): 88–108. DOI: http://dx.doi.org/10.1016/j.ins.2012.09.033
Nicolas Troquard and Philippe Balbiani, “Propositional dynamic logic”, in Stanford Encyclopedia of Philosophy, 2015. https://plato.stanford.edu/entries/logic-dynamic
Nicolas Troquard and Philippe Balbiani, “Propositional dynamic logic”, The Stanford Encyclopedia of Philosophy, 2015.
Vassilis Tzouvaras, Giorgos Stoilos, Giorgos B. Stamou and Jeff Z. Pan, “Uncertainty and ruleml rulebases: A preliminary report”, in Asaf Adi et al., editors, RuleML 2005: Rules and Rule Markup Languages for the Semantic Web, vol. 3791 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2005. DOI: http://dx.doi.org/10.1007/11580072_17
Frank van Harmelen et al. (eds.), Handbook of Knowledge Representation, Foundations of Artificial Intelligence, Elsevier Science, San Diego, 2007.
World Wide Web Consortium (W3C). Swrl: A semantic web rule language combining owl and ruleml, 2004. http://www.w3.org/Submission/SWRL
Ronald R. Yager and Naif Alajlan, “Maxitive belief structures and imprecise possibility distributions”, IEEE Transactions on Fuzzy Systems 25, 4 (2017): 768–774. DOI: http://dx.doi.org/10.1109/TFUZZ.2016.2574930
Lotfi A. Zadeh, “Fuzzy sets as a basis for a theory of possibility”, Fuzzy Sets and Systems 100 (1999): 9–34. DOI: http://dx.doi.org/10.1016/S0165-0114(99)80004-9
Downloads
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 356
Number of citations: 0