Relevant Connexive Logic
DOI:
https://doi.org/10.12775/LLP.2019.007Keywords
connexive extension of relevance logic, connexive logic, natural deduction, axiomatic systemAbstract
In this paper, a connexive extension of the Relevance logic R→ was presented. It is defined by means of a natural deduction system, and a deductively equivalent axiomatic system is presented too. The goal of such an extension is to produce a logic with stronger connection between the antecedent and the consequent of an implication.
References
Anderson, Alan R., and Nuel D. Belnap Jr., Entailment, vol. 1, Princeton University Press, N.J., 1975.
Avron, Arnon, “Simple consequence relations”, Information and Computation 92 (1991): 105–139. DOI: http://dx.doi.org/10.1016/0890-5401(91)90023-U
Avron, Arnon, “Whither relevance logic”, Journal of Philosophical Logic 21, 3 (1992): 243–281. DOI: http://dx.doi.org/10.1007/BF00260930
Došen, Kosta, “The first axiomatization of relevant logic”, Journal of Philosophical Logic 21, 4 (1992): 339–356. DOI: http://dx.doi.org/10.1007/BF00260740
Dunn, J. Michael, and Greg Restall, “Relevance logic”, pages 1–136 in D.M. Gabbay and F. Guenther (eds.), Handbook of Philosophical Logic, vol. 6, 2nd edition, Kluwer, 2002. DOI: http://dx.doi.org/10.1007/978-94-017-0460-1_1
Francez, Nissim, “Natural-deduction for two connexive logics”, IfCoLog Journal of Logics and their Application 3, 3 (2016): 479–504. Special issue on Connexive Logic.
Kneale, William, and Martha Kneale, The Development of Logic, Duckworth, London, 1962.
Mares. Edwin, “Negation”, pages 180–215 in L. Horsten and R. Pettigrew (eds.), The Continuum Companion to Philosophical Logic, Continuum International Publishing Group, London, New York, 2011.
Mares, Edwin D., “Relevance and conjunction”, Journal of Logic and Computation 22 (2012): 7–21. DOI: http://dx.doi.org/10.1093/logcom/exp068
McCall, Storrs, “A history of connexivity”, pages 415–449 in D .M. Gabbay, F.J. Pelletier and J. Woods (eds.), Handbook of the History of Logic, vol. 11: “Logic: Ahistory of its central concepts”, Elsevier, Amsterdam, 2012. DOI: http://dx.doi.org/10.1016/B978-0-444-52937-4.50008-3
Omori, Hitoshi, “A simple connexive extension of the basic relevant logic BD”, IFCoLog Journal of Logic and their Applications, 3, 3 (2016): 467–b78. Special issue on Connexive Logic.
Plato, Jan Von, “Gentzen’s proof systems: Byproducts of the work of a genius”, The Bulletin of Symbolic Logic 18, 3 (2012): 313–367.
Priest, Graham, “Negation as cancellation, and connexive logic”, Topoi 18, 2 (1999): 141–148. DOI: http://dx.doi.org/10.1023/A:1006294205280
Restall, Greg, “Relevant and substructural logics”, in D. Gabbay and J. Woods (eds.), Handbook of the History of Logic, vol. 7, Logic and Modalities in the Twentieth Century, Elsevier, 2006. DOI: http://dx.doi.org/10.1016/S1874-5857(06)80030-0
Schroeder-Heister, Peter, “The categorical and the hypothetical: A critique of some fundamental assumptions of standard semantics”, Synthese 187, 3 (2012): 925–942. DOI: http://dx.doi.org/10.1007/s11229-011-9910-z
Wansing, Heinrich, “Connexive modal logic”, in R. Schmidt, I. Pratt-Hartmann, M. Reynolds and H. Wansing (eds.), Advances in Modal Logic, vol. 5, College Publications, King’s College, London, 2005.
Wansing, Heinrich, “Connexive logic”, in E.N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Fall 2014 edition, 2014. Available at
connexive/"> http://plato.stanford.edu/archives/fall2014/entries/logic-
connexive/
Downloads
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 799
Number of citations: 3