Boolean Connexive Logics: Semantics and tableau approach
DOI:
https://doi.org/10.12775/LLP.2019.003Keywords
Boolean connexive logics, connexive logic, relating semantics, tableau approach, relatednessAbstract
In this paper we define a new type of connexive logics which we call Boolean connexive logics. In such logics negation, conjunction and disjunction behave in the classical, Boolean way. We determine these logics through application of the relating semantics. In the final section we present a tableau approach to the discussed logics.References
Epstein, R.L., 1979, “Relatedness and implication”, Philosophical Studies 36, 2: 137–173. DOI: http://dx.doi.org/10.1007/BF00354267
Epstein, R.L., 1990, The Semantic Foundations of Logic. Vol. 1: Propositional logics, Nijhoff International Philosophy Series, volume 35. DOI: http://dx.doi.org/10.1007/978-94-009-0525-2
Ferguson, T.M., 2015,“Logics of nonsense and Parry systems”, Journal of Philosophical Logic 44, 1: 65–80. DOI: http://dx.doi.org/10.1007/s10992-014-9321-y
Fine, K., 1986, “Analytic implication”, Notre Dame Journal of Formal Logic 27, 2: 169–179. DOI: http://dx.doi.org/10.1305/ndjfl/1093636609
Jarmużek, T., 2013, “Tableau metatheorem for modal logics”, chapter 8 in R. Ciuni, H. Wansing and C. Willkomennen (eds.), Recent Trends in Philosphical Logic, series Trends in Logic, Springer Verlag. DOI: http://dx.doi.org/10.1007/978-3-319-06080-4_8
Jarmużek, T., and B. Kaczkowski, 2014, “On some logic with a relation imposed on formulae: Tableau system F”, Bulletin of the Section of Logic 43, 1/2: 53–72.
Kapsner, A., 2012, “Strong connexivity”, Thought: A Journal of Philosophy 1, 2: 141–145. DOI: http://dx.doi.org/10.1002/tht3.19
McCall, S., 2012, “A history of connexivity”, pages 415–449 in D.M. Gabbay et al. (eds.), Handbook of the History of Logic, vol. 11, “Logic: A history of its central concepts”, Amsterdam: Elsevier. DOI: http://dx.doi.org/10.1016/B978-0-444-52937-4.50008-3
Walton, D.N., “Philosophical basis of relatedness logic”, Philosophical Studies 36, 2: 115–136. DOI: http://dx.doi.org/10.1007/BF00354266
Wansing, H., 2014, “Connexive logic”, in Stanford Encyclopedia of Philosophy, https://plato.stanford.edu/entries/logic-connexive/ access December 12, 2017.
Downloads
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 816
Number of citations: 11